
PCR TROUBLESHOOTING THE ESSENTIAL GUIDE

Michael L. Altshuler

TABLE OF CONTENTS

PREFACE	9
INTRODUCTION	11
APPEARANCES	13
• Unsatisfactory results of PCR	13
CAUSES AND ACTIONS	14
• Do not confront the problem	14
• The nature of PCR and its pathology	15
• Inadequate concentrations of ingredients	18
1. The template	18
2. Inadequate deoxynucleotidetriphosphates	20
3. Inadequate primers	
4. Inadequate Taq	21
5. Inadequate Mg ²⁺	21
6. Suboptimal KCl concentration in the PCR buffer	
or the whole of the PCR buffer	21
Inadequate quality of ingredients	23
1. DNA template	23
Conversion of a DNA solution into a solid body	23
> PCR inhibitors	23
Degraded template	23
Verification of the purity of the template	
DNA by optical means	24
2. Poor water	
3. Deoxynucleotidetriphosphates	

4. Poor primers	25
> Primers may not be good in practice even if	
they are good in design	25
> For primer selection use only dedicated	
software	25
\triangleright Difference in T_m balanced by different	
primer concentrations	26
> Inefficient priming	
5. Inadequate MgCl ₂	
6. Poor buffer	
7. Poor Taq	27
8. The presence of PCR inhibitors	27
9. Substances that do not inhibit PCR	28
· Inadequate storage of ingredients for the PCR reactio	n29
1. The treacherous refrigerators	29
2. Templates, dNTPs, primers	29
3. Taq polymerase	31
4. MgCl ₂	31
5. Buffer	31
The thermocycler	32
1. Conductivity of heat puts a limit	52
to the mix composition	32
2. The ramp	
3. Time and temperature	
4. Dusty, greasy, or fluffy tube wells	
5. Rapid evaporation	
6. Suboptimal performance of the thermocycler or its	50
particular wells	36
7. The tubes are poorly pressed down into the wells	50
or they have got deformed	37

Faulty target selection	38
Incomplete DNA denaturation and dispersal	40
1. Template DNA	
2. PCR fragments	
3. Hairpins	
• The Taq enzyme	
1. Hurdles for Taq polymerase	
Stable hairpins in the template strand	
> AT-rich areas	
GC-rich areas	
Alternating GC/AT-rich regions	43 44
2. Hot start	
> The improved hot start	
The role of the reaction volume in the	
quasi hot start	
3. Nonspecific binding of Taq to DNA	46
Incomplete primer elongation	
or premature termination of DNA synthesis	
1. Under-elongation of primers in the late PCR	
2. Premature termination of the DNA synthesis	
Cosolvents or additives or enhancers	51
1. Helix-destabilizers	
2. Helix-stabilizers	
3. Substances that neutralise the PCR inhibitors	
4. PCR enhancers with poorly understood	
mechanism of action	
The arrest MDM and survey significant ADM	
• Approaching the limit of the PCP sensitivity	5/1

Agarose gel electrophoresis	57
1. The band diffuses and disappears	57
2. Short fragments of uneven length migrate	
down the gel without any separation	57
3. The band is invisible	57
4. The significance and the insignificance of the salt	
concentration in the compared samples	57
5. Bands smear due to their fast movement or the	
DNA overload	58
6. Dirty gel support	58
7. Dried well	58
8. DNA sticking in the gel well caused by	
inappropriate gel density	58
 Causes for specific nonspecifics 	
and the false contamination	59
1. Chimeras	59
2. Allele dropout	59
3. Heteroduplexes	60
4. Primer multimers	61
5. Low resolution electrophoresis resulting in	
imprecise idea of the correct band position	
6. Coincidence or the devil	61
Mineral oil and wax	62
1. Mineral oil	62
2. Wax, paraffin or vaseline	62
Primer-dimers and primer multimers	63
• Short PCR fragments versus long PCR fragments	67
Avoiding accidents	68

CONCLUSIO	NS	69
· A few words	to the novice	69
· A few words	to a PCR adept	69
GLOSSARY		71
INDEX		77

as is sound also where and that is called the mos-