

## Contents

8

| For | reword |                                     | vii |
|-----|--------|-------------------------------------|-----|
| Pre | eface  |                                     | ix  |
| Ac  | knowle | edgements                           | xi  |
| Lis | t of F | igures                              | xix |
| 1.  | Intro  | duction                             | 1   |
|     | 1.1    | Early beginnings                    | 1   |
|     | 1.2    | Development and diversification     | 2   |
|     | 1.3    | The customer                        | 2   |
|     | 1.4    | The operator                        | 3   |
|     | 1.5    | Overall planning                    | 3   |
|     | 1.6    | Choice of route and level           | 4   |
|     | 1.7    | Resources required                  | 5   |
| 2.  | Stati  | on Layout                           | 7   |
|     | 2.1    | The customer and the design process | 7   |
|     | 2.2    | The need for standards              | 8   |
|     | 2.3    | The objectives in station planning  | 9   |
|     | 2.4    | The concept of speed and flow       | 10  |
|     | 2.5    | The consideration of time           | 10  |
|     | 2.6    | Planning for normal operation       | 11  |
|     | 2.7    | The demand matrix                   | 12  |
|     | 2.8    | Capacity requirements               | 15  |
|     | 2.9    | Ticket halls                        | 15  |
|     | 2.10   | Access and interchange              | 18  |

|    | 2.11  | Stairs, escalators and lifts                         | 19 |
|----|-------|------------------------------------------------------|----|
|    | 2.12  | Platforms                                            | 20 |
|    | 2.13  | Footbridges and subways                              | 21 |
|    | 2.14  | Station canopies                                     | 22 |
|    | 2.15  | Access for disabled and mobility impaired passengers | 22 |
|    | 2.16  | The 'downgraded' station                             | 24 |
|    | 2.17  | Planning for hazards                                 | 25 |
|    | 2.18  | Staff accommodation                                  | 25 |
|    | 2.19  | Designing for maintenance                            | 26 |
| 3. | Rolli | ng Stock                                             | 27 |
|    | 3.1   | The definition of railway rolling stock              | 27 |
|    | 3.2   | The range of railway rolling stock                   | 28 |
|    | 3.3   | The evolution of steam motive power                  | 29 |
|    | 3.4   | The advent of electric traction                      | 32 |
|    | 3.5   | Development of electric traction                     | 33 |
|    | 3.6   | Diesel traction                                      | 35 |
|    | 3.7   | Evolution of wheel layout                            | 36 |
|    | 3.8   | Changes in locomotive maintenance practices          | 37 |
|    | 3.9   | From passenger 'carriages' to the modern carbodies   | 38 |
|    | 3.10  | Carbody structures                                   | 39 |
|    | 3.11  | Main line train performance issues                   | 41 |
|    | 3.12  | Train performance issues on metros and light rail    | 41 |
|    | 3.13  | Freight rolling stock                                | 43 |
|    | 3.14  | Specialised engineering rolling stock                | 44 |
|    | 3.15  | Manufacturing methods                                | 46 |
| 4. | Depo  | ots and Workshops                                    | 47 |
|    | 4.1   | Proper maintenance of rolling stock                  | 47 |
|    | 4.2   | Rolling stock maintenance considerations             | 48 |
|    | 4.3   | Establishing a maintenance regime                    | 48 |
|    | 4.4   | Maintenance management                               | 49 |
|    | 4.5   | Balance between workshops and depots                 | 50 |
|    | 4.6   | Depot siting                                         | 50 |
|    | 4.7   | The needs of the maintainer                          | 52 |
|    | 4.8   | Basic requirements for depots                        | 53 |
|    | 4.9   | Performance indicators and audit                     | 55 |

4

| 0   |     |             |
|-----|-----|-------------|
| Con | ter | $\imath ts$ |

| 5. | Tracl | x                                           |           | 57 |
|----|-------|---------------------------------------------|-----------|----|
|    | 5.1   | The origin and development of railway track |           | 57 |
|    | 5.2   | Basic components of track                   |           | 58 |
|    | 5.3   | Track ballast                               |           | 59 |
|    | 5.4   | Materials for track ballast                 |           | 60 |
|    | 5.5   | Sleeper functions                           |           | 60 |
|    | 5.6   | Timber sleepers                             |           | 61 |
|    | 5.7   | Prestressed concrete sleepers (monobloc)    |           | 62 |
|    | 5.8   | Twin block sleepers                         | The state | 64 |
|    | 5.9   | Steel sleepers                              |           | 64 |
|    | 5.10  | Rail fastenings, baseplates and pads        |           | 65 |
|    | 5.11  | Rails                                       |           | 67 |
|    | 5.12  | Rail wear                                   |           | 68 |
|    | 5.13  | Desirability of removing rail joints        |           | 70 |
|    | 5.14  | The introduction of track welding           |           | 70 |
|    | 5.15  | Shop welding to produce long rails          |           | 71 |
|    | 5.16  | Site welding to produce CWR                 |           | 72 |
|    | 5.17  | Stressing or 'locking-up' of CWR            |           | 73 |
|    | 5.18  | Points, switches and crossings              |           | 74 |
|    | 5.19  | Crossing design and manufacture             |           | 75 |
|    | 5.20  | Points or turnouts                          |           | 76 |
|    | 5.21  | Driving, locking and detection of points    |           | 76 |
|    | 5.22  | Conductor rails and components              |           | 77 |
|    | 5.23  | Paved concrete track                        |           | 78 |
|    | 5.24  | Cast-in precast sleeper track               |           | 78 |
|    | 5.25  | Floating slab track                         |           | 79 |
|    | 5.26  | Track installation and renewal              |           | 79 |
|    | 5.27  | Day-to-day maintenance of track             |           | 79 |
| 6. | Eart  | hworks, Drainage and Fencing                |           | 83 |
|    | 6.1   | Stability of earthworks                     |           | 83 |
|    | 6.2   | Short term considerations                   |           | 84 |
|    | 6.3   | Long term considerations                    |           | 84 |
|    | 6.4   | Slips                                       |           | 85 |
|    | 6.5   | Detection of movement of earthworks         |           | 85 |
|    | 6.6   | Dealing with embankment slips               |           | 86 |
|    | 6.7   | Dealing with cutting slips                  |           | 88 |
|    | 6.8   | Drainage of the trackbed                    |           | 89 |

xv

|    | 6.9                    | Sand blankets                          | 90  |
|----|------------------------|----------------------------------------|-----|
|    | 6.10                   | Side or 'cess' drains                  | 91  |
|    | 6.11                   | Centre drains                          | 92  |
|    | 6.12                   | Drain cleaning                         | 92  |
|    | 6.13                   | Ineffective drains                     | 93  |
|    | 6.14                   | Railway fencing                        | 94  |
| 7. | Bridges and Structures |                                        | 95  |
|    | 7.1                    | Early railway structures and materials | 95  |
|    | 7.2                    | Modern welded steelwork                | 97  |
|    | 7.3                    | Reinforced concrete structures         | 100 |
|    | 7.4                    | Prestressed concrete                   | 102 |
|    | 7.5                    | Bridge reconstruction                  | 104 |
|    | 7.6                    | Brick and masonry structures           | 106 |
|    | 7.7                    | Examination of structures              | 108 |
|    | 7.8                    | Structural maintenance                 | 109 |
|    | 7.9                    | Strength assessment                    | 110 |
| 8. | Tunnels and Tunnelling |                                        | 113 |
|    | 8.1                    | The history of tunnelling              | 113 |
|    | 8.2                    | 'Cut-and-cover' tunnels                | 114 |
|    | 8.3                    | The first tunnel shields               | 114 |
|    | 8.4                    | Modern tunnel shields                  | 115 |
|    | 8.5                    | Differing ground conditions            | 116 |
|    | 8.6                    | Construction methods                   | 117 |
|    | 8.7                    | Tunnel linings                         | 118 |
|    | 8.8                    | Vertical and sloping shafts            | 119 |
|    | 8.9                    | Tunnel inspection and maintenance      | 120 |
| 9. | Electrification        |                                        | 121 |
|    | 9.1                    | Electricity as a form of motive power  | 121 |
|    | 9.2                    | Generation of electricity              | 122 |
|    | 9.3                    | Railway electrification systems        | 122 |
|    | 9.4                    | The AC system connection of supply     | 123 |
|    | 9.5                    | The AC system feeder points            | 124 |
|    | 9.6                    | AC overhead equipment                  | 125 |
|    | 9.7                    | Earthing on the AC system              | 126 |
|    | 9.8                    | Electrical interference                | 126 |
|    | 9.9                    | DC low voltage systems                 | 127 |

\*

|     |        | Contents                                            | xvii |
|-----|--------|-----------------------------------------------------|------|
|     | 9.10   | AC nower distribution for DC systems                | 197  |
|     | 9.10   | DC power distribution                               | 127  |
|     | 9.12   | The effects of electrification                      | 120  |
|     | 9.12   | Inspection and maintenance                          | 129  |
| 10. | Signal | ling and Train Control                              | 131  |
|     | 10.1   | The early history of railway signalling             | 131  |
|     | 10.2   | Modern signalling principles                        | 133  |
|     | 10.3   | Track circuits                                      | 134  |
|     | 10.4   | Point operation, locking and detection              | 134  |
|     | 10.5   | Interlocking                                        | 135  |
|     | 10.6   | Minimum headways                                    | 136  |
|     | 10.7   | Home and distant signals                            | 137  |
|     | 10.8   | Subsidiary signals                                  | 137  |
|     | 10.9   | Two aspect colour light signalling                  | 138  |
|     | 10.10  | Three aspect colour light signalling                | 139  |
|     | 10.11  | Four aspect colour light signalling                 | 140  |
|     | 10.12  | Transmission based signalling                       | 141  |
|     | 10.13  | Proof of safety and safety standards                | 142  |
|     | 10.14  | Protection against trains passing signals at danger | 143  |
|     | 10.15  | Signal protection at level crossings                | 145  |
| 11. | Syster | ns and Communications                               | 147  |
|     | 11.1   | Getting things done!                                | 147  |
|     | 11.2   | Human processes                                     | 148  |
|     | 11.3   | Good feedback                                       | 148  |
|     | 11.4   | Interface between operation and engineering         | 149  |
|     | 11.5   | Interface between operator and user                 | 150  |
|     | 11.6   | The railway systems pyramid                         | 150  |
|     | 11.7   | The railway signalling system                       | 151  |
|     | 11.8   | The public address and information systems          | 152  |
|     | 11.9   | Telephones and radio                                | 154  |
|     | 11.10  | Closed circuit television (CCTV)                    | 156  |
|     | 11.11  | Equipment operation and system maintenance          | 156  |
| 12. | Lifts, | Escalators and Pumps                                | 159  |
|     | 12.1   | Vertical transportation                             | 159  |
|     | 12.2   | The development of early lifts                      | 159  |
|     | 12.3   | The development of escalators                       | 160  |

|     | 12.4     | Passenger flow to and from escalators and lifts | 161 |
|-----|----------|-------------------------------------------------|-----|
|     | 12.5     | Achievable flow rates for modern lifts          | 162 |
|     | 12.6     | Flow rates on escalators                        | 162 |
|     | 12.7     | Types of escalators                             | 163 |
|     | 12.8     | Compact type escalators                         | 164 |
|     | 12.9     | Semi-compact type escalators                    | 164 |
|     | 12.10    | Heavy duty public service escalators            | 165 |
|     | 12.11    | Typical HDPS escalator dimensions               | 166 |
|     | 12.12    | Types of modern lift                            | 166 |
|     | 12.13    | Application of lift types                       | 167 |
|     | 12.14    | Safety risks and human factors                  | 168 |
|     | 12.15    | Inspection and maintenance                      | 169 |
|     | 12.16    | Pumps                                           | 170 |
| 13. | Ventil   | ation and Draught Relief                        | 173 |
|     | 13.1     | Is ventilation a problem on railways?           | 173 |
|     | 13.2     | Movement of air                                 | 174 |
|     | 13.3     | Deciding on exhaust or pressure                 | 175 |
|     | 13.4     | The 'piston' effect of trains on fans           | 176 |
|     | 13.5     | Design and operation of tunnel fans             | 176 |
|     | 13.6     | Smoke in tunnels                                | 176 |
|     | 13.7     | Draught relief                                  | 178 |
|     | 13.8     | Maintenance and inspection of fans              | 179 |
|     | 13.9     | Air conditioning                                | 179 |
| 14. | Futur    | e Trends                                        | 181 |
|     | 14.1     | The engineering 'full circle'                   | 181 |
|     | 14.2     | The trend towards broader vision                | 183 |
|     | 14.3     | The trend towards local accountability          | 183 |
|     | 14.4     | Increasing use of information technology        | 184 |
|     | 14.5     | Improved interchange between transport modes    | 184 |
|     | 14.6     | A move towards designing for maintenance        | 185 |
|     | 14.7     | Trends in comfort standards                     | 185 |
| 15. | Concl    | usion                                           | 187 |
|     | 15.1     | Retrospect                                      | 187 |
|     | 15.2     | Postscript                                      | 188 |
| Sub | ject Ind | lex                                             | 189 |

200