

Alexander Fridman

PLASMA CHEMISTRY

CAMBRIDGE

2. Three both Decemb Aright Michight Children and Childre	xxxix xli I
Preface	×li
	1
I Introduction to Theoretical and Applied Plasma Chemistry I.I. Plasma as the Fourth State of Matter	1
I.2. Plasma in Nature and in the Laboratory	2
1.3. Plasma Temperatures: Thermal and Non-Thermal Plasmas	4
 I.4. Plasma Sources for Plasma Chemistry: Gas Discharges I.5. Fundamentals of Plasma Chemistry: Major Components of Chemically Active Plasma and Mechanisms of Plasma-Chemical 	5
Processes	8
I.6. Applied Plasma Chemistry	9
1.7. Plasma as a High-Tech Magic Wand of Modern Technology	10
2 Elementary Plasma-Chemical Reactions	12
2.1. Ionization Processes	12
2.1.1. Elementary Charged Particles in Plasma 2.1.2. Elastic and Inelastic Collisions and Their Fundamental	12
Parameters	13
2.1.3. Classification of Ionization Processes	14
2.1.4. Elastic Scattering and Energy Transfer in Collisions of	
Charged Particles: Coulomb Collisions	15
2.1.5. Direct Ionization by Electron Impact: Thomson Formula	16
2.1.6. Specific Features of Ionization of Molecules by Electron Impact: Frank-Condon Principle and Dissociative	
Ionization	17
2.1.7. Stepwise Ionization by Electron Impact	18
2.1.8. Ionization by High-Energy Electrons and Electron Beams:	
Bethe-Bloch Formula	20
2.1.9. Photo-Ionization Processes	20
2.1.10. Ionization in Collisions of Heavy Particles: Adiabatic	
Principle and Massey Parameter	21
2.1.11. Penning Ionization Effect and Associative Ionization	21
2.2. Elementary Plasma-Chemical Reactions of Positive Ions	22
2.2.1. Different Mechanisms of Electron–Ion Recombination in	22

2.2.2. Dissociative Electron-Ion Recombination and Possible	
Preliminary Stage of Ion Conversion	23
2.2.3. Three-Body and Radiative Electron-Ion Recombination	
Mechanisms	25
2.2.4. Ion–Molecular Reactions, Ion–Molecular Polarization	
Collisions, and the Langevin Rate Coefficient	26
2.2.5. Ion–Atomic Charge Transfer Processes and Resonant	
Charge Transfer	28
2.2.6. Non-Resonant Charge Transfer Processes and	
Ion–Molecular Chemical Reactions of Positive and	
Negative lons	29
2.3. Elementary Plasma-Chemical Reactions Involving Negative Ions	31
2.3.1. Dissociative Electron Attachment to Molecules as a Major	
Mechanism of Negative Ion Formation in Electronegative	
Molecular Gases	31
2.3.2. Three-Body Electron Attachment and Other Mechanisms	
of Formation of Negative Ions	33
2.3.3. Destruction of Negative Ions: Associative Detachment,	
Electron Impact Detachment, and Detachment in	
Collisions with Excited Particles	35
2.3.4. Recombination of Negative and Positive Ions	37
2.3.5. Ion–Ion Recombination in Binary Collisions	38
2.3.6. Three-Body Ion–Ion Recombination: Thomson's Theory	
and Langevin Model	39
2.4. Electron Emission and Heterogeneous Ionization Processes	42
2.4.1. Thermionic Emission: Sommerfeld Formula and Schottky	
Effect	42
2.4.2. Field Emission of Electrons in Strong Electric Fields:	
Fowler-Nordheim Formula and Thermionic Field Emission	43
2.4.3. Secondary Electron Emission	45
2.4.4. Photo-Ionization of Aerosols: Monochromatic Radiation	46
2.4.5. Photo-Ionization of Aerosols: Continuous-Spectrum	
Radiation	49
2.4.6. Thermal Ionization of Aerosols: Einbinder Formula	51
2.4.7. Space Distribution of Electrons and Electric Field Around a	
Thermally Ionized Macro-Particle	52
2.4.8. Electric Conductivity of Thermally Ionized Aerosols	53
2.5. Excitation and Dissociation of Neutral Particles in Ionized	
Gases	54
2.5.1. Vibrational Excitation of Molecules by Electron	
Impact	54
2.5.2. Rate Coefficients of Vibrational Excitation by Electron	
Impact: Semi-Empirical Fridman Approximation	56
2.5.3. Rotational Excitation of Molecules by Electron Impact	58
2.5.4. Electronic Excitation of Atoms and Molecules by Electron	
Impact	59
2.5.5. Dissociation of Molecules by Direct Electron Impact	61
2.5.6. Distribution of Electron Energy in Non-Thermal	
Discharges Between Different Channels of Excitation and	
Ionization	63

	2.6. Elementary Relaxation Processes of Energy Transfer Involving Vibrationally, Rotationally, and Electronically Excited Molecules	67
	2.6.1. Vibrational–Translational (VT) Relaxation: Slow Adiabatic	3.2
	Elementary Process	67
	2.6.2. Landau–Teller Formula for VT-Relaxation Rate Coefficients 2.6.3. Fast Non-Adiabatic Mechanisms of VT Relaxation	69 71
	2.6.4. Vibrational Energy Transfer Between Molecules: Resonant	
	VV Relaxation	72
	2.6.5. Non-Resonant VV Exchange: Relaxation of Anharmonic	
	Oscillators and Intermolecular VV Relaxation	74
	2.6.6. Rotational Relaxation Processes: Parker Formula	76
	2.6.7. Relaxation of Electronically Excited Atoms and Molecules 2.7. Elementary Chemical Reactions of Excited Molecules:	76
	Fridman-Macheret α -Model	79
	2.7.1. Rate Coefficient of Reactions of Excited Molecules	79
	2.7.2. Efficiency α of Vibrational Energy in Overcoming	
	Activation Energy of Chemical Reactions: Numerical Activation	
	Values and Classification Table	81
	2.7.3. Fridman-Macheret α -Model	81
	2.7.4. Efficiency of Vibrational Energy in Elementary Reactions	
	Proceeding Through Intermediate Complexes: Synthesis of	
	Lithium Hydride mend-bloodU bas muntheo2 arountmoD	83
	2.7.5. Dissociation of Molecules in Non-Equilibrium Conditions	
	with Essential Contribution of Translational Energy:	
	Non-Equilibrium Dissociation Factor Z	86
	2.7.6. Semi-Empirical Models of Non-Equilibrium Dissociation of	
	Molecules Determined by Vibrational and Translational	
	Temperatures	87
	Problems and Concept Questions	89
3	Plasma-Chemical Kinetics, Thermodynamics,	
	and Electrodynamics	92
	3.1. Plasma Statistics and Thermodynamics, Chemical and Ionization	
	Equilibrium, and the Saha Equation	92
	3.1.1. Statistical Distributions: Boltzmann Distribution Function	92
	3.1.2. Equilibrium Statistical Distribution of Diatomic Molecules	
	over Vibrational–Rotational States	93
	3.1.3. Saha Equation for Ionization Equilibrium in Thermal Plasma	94
	3.1.4. Dissociation Equilibrium in Molecular Gases	94
	3.1.5. Complete Thermodynamic Equilibrium (CTE) and Local	
	Thermodynamic Equilibrium (LTE) in Plasma	95
	3.1.6. Thermodynamic Functions of Quasi-Equilibrium Thermal	
	Plasma Systems	95
	3.1.7. Non-Equilibrium Statistics of Thermal and Non-Thermal	
	Plasmas	97
	3.1.8. Non-Equilibrium Statistics of Vibrationally Excited	
	Molecules: Treanor Distribution	99
	3.2. Electron Energy Distribution Functions (EEDFs) in Non-Thermal	
	Plasma	100
	3.2.1. Fokker-Planck Kinetic Equation for Determination of EEDF	100

ix

	3.2.2.	Druyvesteyn Distribution, Margenau Distributions, and	
		Other Specific EEDF	101
	3.2.3.	Effect of Electron–Molecular and Electron–Electron	
		Collisions on EEDF	103
	3.2.4.	Relation Between Electron Temperature and the Reduced	
		Electric Field	104
	3.2.5.	Isotropic and Anisotropic Parts of the Electron	
		Distribution Functions: EEDF and Plasma Conductivity	104
33	Diffus	ion, Electric/Thermal Conductivity, and Radiation in Plasma	106
5.5.		Electron Mobility, Plasma Conductivity, and Joule Heating	106
		Plasma Conductivity in Crossed Electric and Magnetic	100
	J.J.Z.	Fields	107
	222		107
		Ion Energy and Ion Drift in Electric Field	109
	3.3.4.	Free Diffusion of Electrons and Ions; Continuity Equation;	
		and Einstein Relation Between Diffusion Coefficient,	100
	23.2	Mobility, and Mean Energy	109
		Ambipolar Diffusion and Debye Radius	110
		Thermal Conductivity in Plasma	111
	3.3.7.	Non-Equilibrium Thermal Conductivity and Treanor Effect	
		in Vibrational Energy Transfer	112
	3.3.8.	Plasma Emission and Absorption of Radiation in	
		Continuous Spectrum and Unsold-Kramers Formula	112
	3.3.9.	Radiation Transfer in Plasma: Optically Thin and Optically	
		Thick Plasmas	113
3.4.	Kinet	ics of Vibrationally and Electronically Excited Molecules in	
		a: Effect of Hot Atoms	5 114
		Fokker-Plank Kinetic Equation for Non-Equilibrium	
		Vibrational Distribution Functions	114
	342	VT and VV Fluxes of Excited Molecules in Energy Space	115
		Non-Equilibrium Vibrational Distribution Functions:	115
	5.1.5.	Regime of Strong Excitation	117
	344	Non-Equilibrium Vibrational Distribution Functions:	
	Ј. т.т.	Regime of Weak Excitation	119
	245	Kinetics of Population of Electronically Excited States in	117
	3.4.3.		120
		Plasma	120
	3.4.6.	Non-Equilibrium Translational Energy Distribution	
		Functions of Heavy Neutrals: Effect of "Hot" Atoms in Fast	53
	Brcita	VT-Relaxation Processes	122
		Generation of "Hot" Atoms in Chemical Reactions	123
3.5.		tional Kinetics of Gas Mixtures, Chemical Reactions, and	
		ation Processes	124
	3.5.1.	Kinetic Equation and Vibrational Distributions in Gas	
		Mixtures: Treanor Isotopic Effect in Vibrational Kinetics	124
	3.5.2.	Reverse Isotopic Effect in Plasma-Chemical Kinetics	126
	3.5.3.	Macrokinetics of Chemical Reactions of Vibrationally	
		Excited Molecules	129
	3.5.4.	Vibrational Energy Losses Due to VT Relaxation	131
		Vibrational Energy Losses Due to Non-Resonance VV	
		Exchange	132
3.6.	Energ	y Balance and Energy Efficiency of Plasma-Chemical	5.6 25
	Proce		132

х

	3.6.1.	Energy Efficiency of Quasi-Equilibrium and	
	5.0.1.	Non-Equilibrium Plasma-Chemical Processes	132
	3.6.2.	Energy Efficiency of Plasma-Chemical Processes	102
	5.0.2.	Stimulated by Vibrational Excitation of Molecules	133
	3.6.3.	Energy Efficiency of Plasma-Chemical Processes	100
	5.0.5.	Stimulated by Electronic Excitation and Dissociative	
		Attachment	134
	3.6.4.	Energy Balance and Energy Efficiency of Plasma-Chemical	101
	5.0.1.	Processes Stimulated by Vibrational Excitation of	
		Molecules	134
	3.6.5.	Components of Total Energy Efficiency: Excitation,	151
	5.0.5.	Relaxation, and Chemical Factors	136
	3.6.6.	Energy Efficiency of Quasi-Equilibrium Plasma-Chemical	150
	5.0.0.	Systems: Absolute, Ideal, and Super-Ideal Quenching	137
	3.6.7.	Mass and Energy Transfer Equations in Multi-Component	157
	5.0.7.	Quasi-Equilibrium Plasma-Chemical Systems	137
	3.6.8.	Transfer Phenomena Influence on Energy Efficiency of	157
	5.0.0.	Plasma-Chemical Processes	139
37	Flomo	nts of Plasma Electrodynamics	140
5.7.	3.7.1.	Ideal and Non-Ideal Plasmas	140
			140
	3.7.2.	Plasma Polarization: Debye Shielding of Electric Field in	141
	272	Plasma	141
	3.7.3.	Plasmas and Sheaths: Physics of DC Sheaths	142
	3.7.4.	High-Voltage Sheaths: Matrix and Child Law Sheath	1.4.4
		Models Discusses sparted wold lamout	144
	3.7.5.	Electrostatic Plasma Oscillations: Langmuir or Plasma	C.3.4
		Frequency	145
	3.7.6.	Penetration of Slow-Changing Fields into Plasma: Skin	0.53-240-
		Effect in Plasma	146
	3.7.7.	Magneto-Hydrodynamics: "Diffusion" of Magnetic Field	
		and Magnetic Field Frozen in Plasma	146
	3.7.8.	Magnetic Pressure: Plasma Equilibrium in Magnetic Field	
		and Pinch Effect	147
	3.7.9.	Two-Fluid Magneto-Hydrodynamics: Generalized Ohm's	
		Law	149
	3.7.10	. Plasma Diffusion Across Magnetic Field	149
	3.7.11	. Magneto-Hydrodynamic Behavior of Plasma: Alfven	
		Velocity and Magnetic Reynolds Number	150
	3.7.12	. High-Frequency Plasma Conductivity and Dielectric	
		Permittivity	151
	3.7.13	. Propagation of Electromagnetic Waves in Plasma	153
	3.7.14	. Plasma Absorption and Reflection of Electromagnetic	
		Waves: Bouguer Law: Critical Electron Density	154
	Proble	ems and Concept Questions	155
		Configurations of Aire Discharges Applied in Plasma	
Ele	ectric D	Discharges in Plasma Chemistry	157
4.1	. Fundai	mentals of Electric Breakdown, Streamer Processes, and	
	Steady	-State Regimes of Non-Equilibrium Electrical Discharges	157
	4.1.1.	Townsend Mechanism of Electric Breakdown and Paschen	
		Curves	157
	4.1.2.	Spark Breakdown Mechanism: Streamer Concept	159

	4.1.3.	Meek Criterion of Streamer Formation: Streamer	
		Propagation Models	163
	4.1.4.	Streamers and Microdischarges	164
	4.1.5.	Interaction of Streamers and Microdischarges	166
	4.1.6.	Monte Carlo Modeling of Interaction of Streamers and	
		Microdischarges	167
	4.1.7.	Self-Organized Pattern of DBD Microdischarges due to	
		Streamer Interaction	168
	4.1.8.	Steady-State Regimes of Non-Equilibrium Electric	
		Discharges and General Regimes Controlled by Volume	
		and Surface Recombination Processes	170
	4.1.9.	Discharge Regime Controlled by Electron–Ion	
		Recombination	171
	4.1.10.	Discharge Regime Controlled by Electron Attachment	172
		Non-Thermal Discharge Regime Controlled by	A.F
		Charged-Particle Diffusion to the Walls: The	
		Engel-Steenbeck Relation	172
42	Glow [Discharges	172
Τ.Ζ.		General Structure and Configurations of Glow	175
	7.2.1.	Discharges	175
	422	0	175
		Current-Voltage Characteristics of DC Discharges	1//
	4.2.3.	Dark Discharge and Transition from Townsend Dark to	178
	12.1	Glow Discharge	178
	4.2.4.	Current-Voltage Characteristics of Cathode Layer:	170
	105	Normal Glow Discharge	179
	4.2.5.	Abnormal, Subnormal, and Obstructed Regimes of Glow	101
		Discharges	181
		Positive Column of Glow Discharge	182
		Hollow Cathode Glow Discharge	183
	4.2.8.	Other Specific Glow Discharge Plasma Sources	184
	4.2.9.	Energy Efficiency Peculiarities of Glow Discharge	
		Application for Plasma-Chemical Processes	186
4.3.		scharges de la contration	187
	4.3.1.	Classification and Current-Voltage Characteristics of Arc	
		Discharges	187
	4.3.2.	Cathode and Anode Layers of Arc Discharges	189
	4.3.3.	Cathode Spots in Arc Discharges	191
	4.3.4.	Positive Column of High-Pressure Arcs: Elenbaas-Heller	
		Equation and the complete Chernel Transport Age 101	193
	4.3.5.	Steenbeck-Raizer "Channel" Model of Positive	
		Column	194
	4.3.6.	Steenbeck-Raizer Arc "Channel" Modeling of Plasma	
		Temperature, Specific Power, and Electric Field in Positive	
		Column	196
	4.3.7.	Configurations of Arc Discharges Applied in Plasma	
		Chemistry and Plasma Processing	197
	4.3.8.	Gliding Arc Discharge	200
	4.3.9.	Equilibrium Phase of Gliding Arc, Its Critical Parameters,	1002
		and Fast Equilibrium-to-Non-Equilibrium Transition	204
	4.3.10	Gliding Arc Stability Analysis and Transitional and	
		Non-Equilibrium Phases of the Discharge	205
			200

		4.3.11.	Special Configurations of Gliding Arc Discharges: Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow	207
	4.4.		requency and Microwave Discharges in Plasma Chemistry	209
		4.4.1.	Generation of Thermal Plasma in Radiofrequency	.1.2 · · · ·
			Discharges	209
		4.4.2.		1.2
		Plasm	Discharges	211
		4.4.3.	Non-Thermal Radiofrequency Discharges: Capacitive and	
		341.	Inductive Coupling of Plasma	215
		4.4.4.	Non-Thermal RF-CCP Discharges in Moderate Pressure	2.282
			Regimes	216
			Low-Pressure Capacitively Coupled RF Discharges	219
			RF Magnetron Discharges	222
		4.4.7.	Non-Thermal Inductively Coupled RF Discharges in	224
			Cylindrical Coil	224
		4.4.8.	Planar-Coil and Other Configurations of Non-Thermal	224
		4.4.0	Inductively Coupled RF Discharges	226
		4.4.9.	Non-Thermal Low-Pressure Microwave and Other	220
		4 4 10	Wave-Heated Discharges	229
		4.4.10.	Non-Equilibrium Plasma-Chemical Microwave Discharges	221
	4.5	NI	of Moderate Pressure	231
	4.5.		hermal Atmospheric Pressure Discharges	233
			Corona Discharges	233
			Pulsed Corona Discharges	234
			Dielectric Barrier Discharges	237
		4.5.4.		220
		455	Ferroelectric Discharges	239
			Spark Discharges	240
			Atmospheric Pressure Glow Mode of DBD	241
			APGs: Resistive Barrier Discharge	242
		4.5.8.	One-Atmosphere Uniform Glow Discharge Plasma as	242
		100	Another Modification of APG	243 244
			Electronically Stabilized APG Discharges	
	16		Atmospheric-Pressure Plasma Jets	245 247
	4.0.		discharges General Features of Microdischarges	247
			Micro-Glow Discharge	248
			Micro-Hollow-Cathode Discharge	251
		4.6.4.	Arrays of Microdischarges: Microdischarge	251
		4.0.4.	Self-Organization and Structures	252
		4.6.5.	Kilohertz-Frequency-Range Microdischarges	252
			RF Microdischarges	255
			Microwave Microdischarges	255
			ems and Concept Questions	257
5	Ino	rganic	Gas-Phase Plasma Decomposition Processes	259
	5.1.	-	Dissociation in Plasma, Thermal, and Non-Thermal	
			anisms	259
		5.1.1.	Fundamental and Applied Aspects of the CO ₂ Plasma	
			Chemistry	259

	5.1.2.	Major Experimental Results on CO ₂ : Dissociation in Different Plasma Systems and Energy Efficiency of the Process	260
	5.1.3.	Mechanisms of CO ₂ Decomposition in Quasi-Equilibrium	
		Thermal Plasma	262
	5.1.4.	CO ₂ Dissociation in Plasma, Stimulated by Vibrational	2/2
		Excitation of Molecules	263
	5.1.5.	CO ₂ Dissociation in Plasma by Means of Electronic	
		Excitation of Molecules	265
	5.1.6.	CO ₂ Dissociation in Plasma by Means of Dissociative Attachment of Electrons	267
5.2.	Physi	cal Kinetics of CO ₂ Dissociation, Stimulated by Vibrational	
		ation of the Molecules in Non-Equilibrium Plasma	268
		Asymmetric and Symmetric CO ₂ Vibrational Modes	268
		Contribution of Asymmetric and Symmetric CO ₂	
		Vibrational Modes into Plasma-Chemical Dissociation	
		Process	269
	523	Transition of Highly Vibrationally Excited CO ₂ Molecules	207
	5.2.5.	into the Vibrational Quasi Continuum	271
	524		2/1
	5.2.4.	One-Temperature Approximation of CO ₂ Dissociation	070
		Kinetics in Non-Thermal Plasma	273
	5.2.5.	Two-Temperature Approximation of CO ₂ Dissociation	
		Kinetics in Non-Thermal Plasma	274
	5.2.6.	Elementary Reaction Rates of CO ₂ Decomposition,	
		Stimulated in Plasma by Vibrational Excitation of the	
		Molecules	275
5.3.	Vibra	ational Kinetics and Energy Balance of Plasma-Chemical	
	CO ₂	Dissociation	276
	5.3.1.	Two-Temperature Approach to Vibrational Kinetics and	
		Energy Balance of CO ₂ Dissociation in Non-Equilibrium	
		Plasma: Major Energy Balance and Dynamic Equations	276
	532	Two-Temperature Approach to Vibrational Kinetics and	106
	0.0.2.	Energy Balance of CO_2 Dissociation in Non-Equilibrium	
		Plasma: Additional Vibrational Kinetic Relations	277
	522		211
	5.5.5.	Results of CO_2 Dissociation Modeling in the	270
		Two-Temperature Approach to Vibrational Kinetics	279
	5.3.4.	One-Temperature Approach to Vibrational Kinetics and	
		Energy Balance of CO ₂ Dissociation in Non-Equilibrium	
		· · ·	280
	5.3.5.	Threshold Values of Vibrational Temperature, Specific	
		Energy Input, and Ionization Degree for Effective	
		Stimulation of CO ₂ Dissociation by Vibrational Excitation	
		of the Molecules	281
	5.3.6.	Characteristic Time Scales of CO ₂ Dissociation in Plasma	
		Stimulated by Vibrational Excitation of the Molecules:	
		VT-Relaxation Time	282
	537	Flow Velocity and Compressibility Effects on Vibrational	Select CC
	5.5.7.	Relaxation Kinetics During Plasma-Chemical CO ₂	
			202
	520	Dissociation: Maximum Linear Preheating Temperature	283
	5.3.8.	CO ₂ Dissociation in Active and Passive Discharge Zones:	
		Discharge (τ_{eV}) and After-Glow (τ_{p}) Residence Time	284

	5.3.9.	Ionization Degree Regimes of the CO ₂ Dissociation	
		Process in Non-Thermal Plasma	285
105	5.3.10.	Energy Losses Related to Excitation of CO ₂ Dissociation Products: Hyperbolic Behavior of Energy Efficiency	
		Dependence on Specific Energy Input	286
5.4.	Enor	gy Efficiency of CO_2 Dissociation in Quasi-Equilibrium	200
5.1.		ha, and Non-Equilibrium Effects of Quenching Products of	
		mal Dissociation	288
			200
	5.4.1.	Ideal and Super-Ideal Modes of Quenching Products of	200
	F 4 3	CO ₂ Dissociation in Thermal Plasma	288
	5.4.2.	Kinetic Evolution of Thermal CO ₂ Dissociation Products	200
	5.4.2	During Quenching Phase	288
	5.4.3.	Energy Efficiency of CO ₂ Dissociation in Thermal Plasma	
	5.9.2.	Under Conditions of Ideal Quenching of Products	289
	5.4.4.	Vibrational–Translational Non-Equilibrium Effects of	
		Quenching Products of Thermal CO ₂ Dissociation in	
		Plasma: Super-Ideal Quenching Mode	290
	5.4.5.	Maximum Value of Energy Efficiency of CO ₂ Dissociation	
		in Thermal Plasma with Super-Ideal Quenching of the	
		Dissociation Products	291
	5.4.6.	Kinetic Calculations of Energy Efficiency of CO ₂	
		Dissociation in Thermal Plasma with Super-Ideal	
		Quenching	291
	5.4.7.	Comparison of Thermal and Non-Thermal Plasma	
		Approaches to CO ₂ Dissociation: Comments on Products	
		(CO-O ₂) Oxidation and Explosion	292
5.5.	Expe	rimental Investigations of CO ₂ Dissociation in Different	
	-	narge Systems	293
		Experiments with Non-Equilibrium Microwave Discharges	
		of Moderate Pressure, Discharges in Waveguide	
		Perpendicular to Gas Flow Direction, and Microwave	
		Plasma Parameters in CO_2	293
	552	Plasma-Chemical Experiments with Dissociation of CO_2 in	
	J.J.L.	Non-Equilibrium Microwave Discharges of Moderate	
		Pressure	295
	553	Experimental Diagnostics of Plasma-Chemical	215
	J.J.J.	Non-Equilibrium Microwave Discharges in	
			204
		Moderate-Pressure CO ₂ : Plasma Measurements	296
	5.5.4.	Experimental Diagnostics of Plasma-Chemical	
		Non-Equilibrium Microwave Discharges in	207
		Moderate-Pressure CO ₂ : Temperature Measurements	297
	5.5.5.	CO ₂ Dissociation in Non-Equilibrium Radiofrequency	
		Discharges: Experiments with Inductively Coupled	
		Plasma	299
	5.5.6.	CO ₂ Dissociation in Non-Equilibrium Radiofrequency	345
	5,112	Discharges: Experiments with Capacitively Coupled Plasma	300
	5.5.7.	CO ₂ Dissociation in Non-Self-Sustained	
		Atmospheric-Pressure Discharges Supported by	
		High-Energy Electron Beams or UV Radiation	302
	5.5.8.	CO ₂ Dissociation in Different Types of Glow Discharges	302

	5.5.9.	CO ₂ Dissociation in Other Non-Thermal and Thermal	
		Discharges: Contribution of Vibrational and Electronic	
		Excitation Mechanisms	304
5.6.	CO ₂	Dissociation in Special Experimental Systems, Including	
		rsonic Stimulation and Plasma Radiolysis	304
		Dissociation of CO ₂ in Supersonic Non-Equilibrium	
		Discharges: Advantages and Gasdynamic Characteristics	304
	5.6.2.	Kinetics and Energy Balance of Non-Equilibrium	
		Plasma-Chemical CO ₂ Dissociation in Supersonic Flow	306
	5.6.3.	Limitations of Specific Energy Input and CO ₂ Conversion	
		Degree in Supersonic Plasma Related to Critical Heat	
		Release and Choking the Flow	308
	564	Experiments with Dissociation of CO_2 in Non-Equilibrium	1.0100
	5.0.1.	Supersonic Microwave Discharges	308
	565	Gasdynamic Stimulation of CO ₂ Dissociation in Supersonic	500
	5.0.5.	Flow: "Plasma Chemistry Without Electricity"	309
	544	Plasma Radiolysis of CO_2 Provided by High-Current	507
	5.0.0.	Relativistic Electron Beams	210
	F / 7		310
	5.6.7.	Plasma Radiolysis of CO ₂ in Tracks of Nuclear Fission	211
		Fragments	311
	5.6.8.	Ionization Degree in Tracks of Nuclear Fission Fragments,	
		Energy Efficiency of Plasma Radiolysis of CO ₂ , and	
		Plasma-Assisted Chemonuclear Reactors	313
5.7.		plete CO ₂ Dissociation in Plasma with Production of	82 T
		on and Oxygen	314
	5.7.1.	Complete Plasma-Chemical Dissociation of CO ₂ : Specifics	
		of the Process and Elementary Reaction Mechanism	314
	5.7.2.	Kinetics of CO Disproportioning Stimulated in and a state	
		Non-Equilibrium Plasma by Vibrational Excitation of	
		Molecules	314
	5.7.3.	Experiments with Complete CO ₂ Dissociation in	
		Microwave Discharges Operating in Conditions of Electron	
		Cyclotron Resonance	316
	5.7.4.	Experiments with Complete CO ₂ Dissociation in	
		Stationary Plasma-Beam Discharge	317
5.8.	Disso	ociation of Water Vapor and Hydrogen Production in	
		na-Chemical Systems	318
		Fundamental and Applied Aspects of H ₂ O Plasma	
		Chemistry	318
	5.8.2.	Kinetics of Dissociation of Water Vapor Stimulated in	
		Non-Thermal Plasma by Vibrational Excitation of Water	
		Molecules	319
	5.8.3.	Energy Efficiency of Dissociation of Water Vapor	1991
		Stimulated in Non-Thermal Plasma by Vibrational	
		Excitation	320
	584	Contribution of Dissociative Attachment of Electrons into	520
	5.0.1.	Decomposition of Water Vapor in Non-Thermal	
		Plasma	322
	5 8 5	Kinetic Analysis of the Chain Reaction of H ₂ O Dissociation	522
	5.0.5.	via Dissociative Attachment/Detachment Mechanism	324
		The Dissociative Attachment Detachment Prechamsin	J27

5.8.6. H ₂ O Dissociation in Thermal Plasma and Quenching of the Dissociation Products: Absolute and Ideal Quenching	205
Modes 5.8.7. Cooling Rate Influence on Kinetics of H ₂ O Dissociation	325
Products in Thermal Plasma: Super-Ideal Quenching	
Effect	326
5.8.8. Water Dissociation and H ₂ Production in Plasma-Chemical	010
System CO ₂ -H ₂ O	328
5.8.9. CO-to-H ₂ Shift Reaction: Plasma Chemistry of	
CO–O ₂ –H ₂ O Mixture	330
5.9. Experimental Investigations of H ₂ O Dissociation in Different	
Discharge Systems	331
5.9.1. Microwave Discharge in Water Vapor	331
5.9.2. Plasma-Chemical Experiments with Microwave Discharge	
in Water Vapor	332
5.9.3. Dissociation of Water Vapor in Glow Discharges	332
5.9.4. Dissociation of H_2O with Production of H_2 and H_2O_2 in	
Supersonic Microwave Discharges	334
5.9.5. Plasma Radiolysis of Water Vapor in Tracks of Nuclear	
Fission Fragments	335
5.9.6. Effect of Plasma Radiolysis on Radiation Yield of Hydrogen	
Production in Tracks of Nuclear Fission Fragments	336
5.10. Inorganic Gas-Phase Plasma-Chemical Processes of	
Decomposition of Triatomic Molecules: NH ₃ , SO ₂ , and	
N ₂ O	336
5.10.1. Gas-Phase Plasma Decomposition Reactions in Multi-Phase	224
Technologies	336
5.10.2. Dissociation of Ammonia in Non-Equilibrium Plasma:	227
Mechanism of the Process in Glow Discharge	337
5.10.3. Mechanism of Formation of Molecular Nitrogen and	
Hydrogen in Non-Equilibrium Plasma-Chemical Process of Ammonia Dissociation	220
5.10.4. Plasma Dissociation of Sulfur Dioxide	338 338
5.10.4. Plasma Dissociation of Sulfur Dioxide 5.10.5. Destruction and Conversion of Nitrous Oxide in	338
Non-Equilibrium Plasma	340
5.11. Non-Thermal and Thermal Plasma Dissociation of Diatomic	340
Molecules	341
5.11.1. Plasma-Chemical Decomposition of Hydrogen Halides:	541
Example of HBr Dissociation with Formation of Hydrogen	
and Bromine	341
5.11.2. Dissociation of HF, HCl, and HI in Plasma	343
5.11.3. Non-Thermal and Thermal Dissociation of Molecular	63753
Fluorine	344
5.11.4. Dissociation of Molecular Hydrogen in Non-Thermal and	
Thermal Plasma Systems	345
5.11.5. Dissociation of Molecular Nitrogen in Non-Thermal and	6.0
Thermal Plasma Systems	347
5.11.6. Thermal Plasma Dissociation of Other Diatomic Molecules	
(O ₂ , Cl ₂ , Br ₂)	347
Problems and Concept Questions	351

6	Gas	-Phas	e Inorganic Synthesis in Plasma	355
	6.1.	Plasn	na-Chemical Synthesis of Nitrogen Oxides from Air and	
		Nitro	ogen–Oxygen Mixtures: Thermal and Non-Thermal	
		Mech	nanisms	355
		6.1.1.	Fundamental and Applied Aspects of NO Synthesis in Air	
			Plasma	355
		6.1.2.	Mechanisms of NO Synthesis Provided in Non-Thermal	
			Plasma by Excitation of Neutral Molecules: Zeldovich	
			Mechanism	356
		6.1.3.	Mechanisms of NO Synthesis Provided in Non-Thermal	
			Plasma by Charged Particles	358
		6.1.4.	NO Synthesis in Thermal Plasma Systems	358
			Energy Efficiency of Different Mechanisms of NO Synthesis	
			in Thermal and Non-Thermal Discharge Systems	359
	6.2.	Elem	entary Reaction of NO Synthesis Stimulated by Vibrational	
			ation of Molecular Nitrogen	361
			Limiting Elementary Reaction of Zeldovich Mechanism:	
			Adiabatic and Non-Adiabatic Channels of NO Synthesis	361
		6.2.2.	Electronically Adiabatic Channel of NO Synthesis	
			$O + N_2 \rightarrow NO + N$ Stimulated by Vibrational Excitation	
			of Molecular Nitrogen	361
		6.2.3.	Electronically Non-Adiabatic Channel of NO Synthesis	
			$(O + N_2 \rightarrow NO + N)$: Stages of the Elementary Process	
			and Method of Vibronic Terms	363
		6.2.4.	Transition Probability Between Vibronic Terms	
			Corresponding to Formation of Intermediate N ₂ O [*] ($^{1}\Sigma^{+}$)	
			Complex	364
		6.2.5.	Probability of Formation of Intermediate $N_2O^*(^{1}\Sigma^+)$	
			Complex in Electronically Non-Adiabatic Channel of NO	
			Synthesis	365
		6.2.6.	Decay of Intermediate Complex $N_2O^*(^1\Sigma^+)$: Second Stage	
			of Electronically Non-Adiabatic Channel of NO Synthesis	366
		6.2.7.	Total Probability of Electronically Non-Adiabatic Channel	
			of NO Synthesis (O + N ₂ \rightarrow NO + N)	367
	6.3.	Kine	tics and Energy Balance of Plasma-Chemical NO Synthesis	
			ulated in Air and O ₂ –N ₂ Mixtures by Vibrational Excitation	367
		6.3.1.	Rate Coefficient of Reaction $O + N_2 \rightarrow NO + N$	
			Stimulated in Non-Equilibrium Plasma by Vibrational	
			Excitation of Nitrogen Molecules	367
		6.3.2.	Energy Balance of Plasma-Chemical NO Synthesis:	
			Zeldovich Mechanism Stimulated by Vibrational Excitation	368
		6.3.3.	Macro-Kinetics of Plasma-Chemical NO Synthesis: Time	
			Evolution of Vibrational Temperature	369
		6.3.4.	Energy Efficiency of Plasma-Chemical NO Synthesis:	
			Excitation and Relaxation Factors	370
		6.3.5.	Energy Efficiency of Plasma-Chemical NO Synthesis:	
			Chemical Factor	371
		6.3.6.	Stability of Products of Plasma-Chemical Synthesis to	
			Reverse Reactions in Active Zone of Non-Thermal Plasma	371

6.3.7	7. Effect of "Hot Nitrogen Atoms" on Yield of NO Synthesis in Non-Equilibrium Plasma in Air and Nitrogen–Oxygen	
	Mixtures	372
6.3.8	3. Stability of Products of Plasma-Chemical NO Synthesis to	
	Reverse Reactions Outside of the Discharge Zone	373
6.4. Exp	perimental Investigations of NO Synthesis from Air and	
N ₂ -	-O ₂ Mixtures in Different Discharges	374
6.4.	I. Non-Equilibrium Microwave Discharge in Magnetic Field	
	Operating in Conditions of Electron Cyclotron Resonance	374
6.4.2	2. Evolution of Vibrational Temperature of Nitrogen	
	Molecules in Non-Equilibrium ECR: Microwave Discharge	
	During Plasma-Chemical NO Synthesis	376
6.4.	3. NO Synthesis in the Non-Equilibrium ECR Microwave	
	Discharge	377
6.4.4	4. NO Synthesis in Non-Self-Sustained Discharges Supported	
	by Relativistic Electron Beams	378
6.4.	5. Experiments with NO Synthesis from Air in Stationary	
	Non-Equilibrium Plasma-Beam Discharge	379
6.4.	6. Experiments with NO Synthesis from N_2 and O_2 in	
	Thermal Plasma of Arc Discharges	380
6.4.	7. General Schematic and Parameters of Industrial	
	Plasma-Chemical Technology of NO Synthesis from Air	381
6.5. Pla	sma-Chemical Ozone Generation: Mechanisms and Kinetics	382
	I. Ozone Production as a Large-Scale Industrial Application	
	of Non-Thermal Atmospheric-Pressure Plasma	382
6.5.	2. Energy Cost and Energy Efficiency of Plasma-Chemical	
	Production of Ozone in Some Experimental and Industrial	
	Systems	383
6.5	3. Plasma-Chemical Ozone Formation in Oxygen	383
	4. Optimum DBD Microdischarge Strength and Maximization	A A TH
L' KOD	of Energy Efficiency of Ozone Production in Oxygen	
	Plasma	385
65	5. Plasma-Chemical Ozone Generation in Air	386
	6. Discharge Poisoning Effect During Ozone Generation in	
0.0.	Air Plasma	387
65	7. Temperature Effect on Plasma-Chemical Generation and	507
0.5.	Stability of Ozone	388
65	8. Negative Effect of Water Vapor on Plasma-Chemical	500
0.5.	Ozone Synthesis	389
6.5	9. Effect of Hydrogen, Hydrocarbons, and Other Admixtures	507
0.5.	on Plasma-Chemical Ozone Synthesis	390
6.6. Exi	perimental and Industrial Plasma-Chemical Ozone Generators	392
and the second sec	1. Synthesis of Ozone in Dielectric Barrier Discharges as the	372
0.0.	Oldest and Still Most Successful Approach to Ozone	
	Generation	392
6.6	2. Tubular DBD Ozone Generators and Large Ozone	572
0.0.	Production Installations	392
6.6	3. Planar and Surface Discharge Configurations of DBD	372
0.0.	Ozone Generators	394
6.6	4. Synthesis of Ozone in Pulsed Corona Discharges	395

		5.6.5. Peculiarities of Ozone Synthesis in Pulsed Corona with	
		Respect to DBD	396
		6.6.6. Possible Specific Contribution of Vibrational Excitation of	
		Molecules to Ozone Synthesis in Pulsed Corona	
		Discharges	397
	6.7.	Synthesis of KrF ₂ and Other Aggressive Fluorine Oxidizers	399
		6.7.1. Plasma-Chemical Gas-Phase Synthesis of KrF ₂ and	
		Mechanism of Surface Stabilization of Reaction Products	399
		6.7.2. Physical Kinetics of KrF ₂ Synthesis in Krypton Matrix	400
		6.7.3. Synthesis of KrF ₂ in Glow Discharges, Barrier Discharges,	
		and Photo-Chemical Systems	401
		6.7.4. Synthesis of KrF ₂ in Non-Equilibrium Microwave Discharge	
		in Magnetic Field	402
		6.7.5. Plasma F_2 Dissociation as the First Step in Synthesis of	
		Aggressive Fluorine Oxidizers	402
		6.7.6. Plasma-Chemical Synthesis of O_2F_2 and Other Oxygen	
		Fluorides	403
		6.7.7. Plasma-Chemical Synthesis of NF3 and Other Nitrogen	-
		Fluorides	404
		6.7.8. Plasma-Chemical Synthesis of Xenon Fluorides and Other	101
		Fluorine Oxidizers	405
	6.8.	Plasma-Chemical Synthesis of Hydrazine (N_2H_4), Ammonia	100
	0.0.	(NH ₃), Nitrides of Phosphorus, and Some Other Inorganic	
		Compounds	406
		6.8.1. Direct Plasma-Chemical Hydrazine (N_2H_4) Synthesis from	100
		Nitrogen and Hydrogen in Non-Equilibrium Discharges	406
		6.8.2. Hydrazine (N_2H_4) Synthesis from N_2-H_2 Mixture in	100
		Non-Self-Sustained Stationary Discharge Supported by	
		Electron Beam	407
		6.8.3. Kinetics of Hydrazine (N_2H_4) Synthesis from N_2-H_2	107
		Mixture in Non-Thermal Plasma Conditions	407
			407
		6.8.4. Synthesis of Ammonia in DBD and Glow Discharges 6.8.5. Plasma-Chemical Synthesis of Nitrides of Phosphorus	
			409
		6.8.6. Sulfur Gasification by Carbon Dioxide in Non-Thermal and	400
		Thermal Plasmas	409
		6.8.7. CN and NO Synthesis in CO–N ₂ Plasma	412
		6.8.8. Gas-Phase Synthesis Related to Plasma-Chemical	412
		Oxidation of HCl and SO ₂	413
		Problems and Concept Questions	414
7	Pla	ma Synthesis, Treatment, and Processing of Inorganic	
		erials, and Plasma Metallurgy	417
	7.1.	Plasma Reduction of Oxides of Metals and Other Elements	417
	7.1.	7.1.1. Thermal Plasma Reduction of Iron Ore, Iron Production	117
		from Oxides Using Hydrogen and Hydrocarbons, and	
		Plasma-Chemical Steel Manufacturing	417
		7.1.2. Productivity and Energy Efficiency of Thermal Plasma	117
		Reduction of Iron Ore	419
		7.1.3. Hydrogen Reduction of Refractory Metal Oxides in	717
		Thermal Plasma and Plasma Metallurgy of Tungsten and	
		Molybdenum	420
			420

7	7.1.4. Thermal Plasma Reduction of Oxides of Aluminum and	
	Other Inorganic Elements	423
7	7.1.5. Reduction of Metal Oxides and Production of Metals Using Non-Thermal Hydrogen Plasma	425
7	7.1.6. Non-Equilibrium Surface Heating and Evaporation Effect in	
	Heterogeneous Plasma-Chemical Processes in	
	Non-Thermal Discharges	426
7	7.1.7. Non-Equilibrium Surface Heating and Evaporation in	
	Plasma Treatment of Thin Layers of Flat Surfaces: Effect of	
	Short Pulses	427
7.2. F	Production of Metals and Other Elements by Carbothermic	
F	Reduction and Direct Decomposition of Their Oxides in	
	Thermal Plasma	429
	7.2.1. Carbothermic Reduction of Elements from Their Oxides	429
	7.2.2. Production of Pure Metallic Uranium by Carbothermic	
	Plasma-Chemical Reduction of Uranium Oxides	429
201	7.2.3. Production of Niobium by Carbothermic	
	Plasma-Chemical Reduction of Niobium Oxides	430
1000	7.2.4. Double-Stage Carbothermic Thermal Plasma Reduction	12.0
	of Rare and Refractory Metals from Their Oxides	430
010	7.2.5. Carbothermic Reduction of Iron from Iron Titanium	
	Oxide Concentrates in a Thermal Plasma Fluidized Bed	431
	7.2.6. Production of Silicon Monoxide by SiO_2 Decomposition	422
	in Thermal Plasma	432
	7.2.7. Experiments with SiO ₂ Reduction to Pure Silicon	
	Monoxide in High-Temperature Radiofrequency ICP	433
	Discharges 7.2.8. Reduction of Aluminum by Direct Thermal Plasma	433
	Decomposition of Alumina Decomposition of Alumina	434
	7.2.9. Reduction of Vanadium by Direct Plasma Decomposition	- TJT
	of Its Oxides, V_2O_5 and V_2O_3	436
	7.2.10. Reduction of Indium and Germanium by Direct Plasma	150
	Decomposition of Their Oxides	439
7.3.	Hydrogen Plasma Reduction of Metals and Other Elements from	10,7
	Their Halides	440
	7.3.1. Using Halides for Production of Metals and Other	2.5490
	Elements from Their Compounds	440
	7.3.2. Plasma-Chemical Production of Boron: Thermal Plasma	
	Reduction of BCl3 with Hydrogen	441
	7.3.3. Hydrogen Reduction of Niobium from Its Pentachloride	
	(NiCl ₅) in Thermal Plasma	442
	7.3.4. Hydrogen Reduction of Uranium from Its Hexafluoride	
	(UF ₆) in Thermal Plasma	442
	7.3.5. Hydrogen Reduction of Tantalum (Ta), Molybdenum (Mo),	
	Tungsten (W), Zirconium (Zr), and Hafnium (Hf) from	
	Their Chlorides in Thermal Plasma	443
	7.3.6. Hydrogen Reduction of Titanium (Ti), Germanium (Ge),	
	and Silicon (Si) from Their Tetrachlorides in Thermal	
	Plasma Configuration and a second	445
122	7.3.7. Thermal Plasma Reduction of Some Other Halides with	
	Hydrogen: Plasma Production of Intermetallic Compounds	446

7.3.8. Hydrogen Reduction of Halides in Non-Thermal Plasma	448
7.4. Direct Decomposition of Halides in Thermal and Non-Thermal	
Plasma	448
7.4.1. Direct Decomposition of Halides and Production of Meta	als
in Plasma	448
7.4.2. Direct UF ₆ Decomposition in Thermal Plasma:	
Requirements for Effective Product Quenching	449
7.4.3. Direct Decomposition of Halides of Some Alkali and	
Alkaline Earth Metals in Thermal Plasma	451
7.4.4. Direct Thermal Plasma Decomposition of Halides of	
Aluminum, Silicon, Arsenic, and Some Other Elements of	Table-oduct
Groups 3, 4, and 5	457
7.4.5. Direct Thermal Plasma Decomposition of Halides of	157
Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Vanadium (N	0
	461
and Niobium (Nb)	
7.4.6. Direct Decomposition of Halides of Iron (Fe), Cobalt (Co	
Nickel (Ni), and Other Transition Metals in Thermal Plasm	
7.4.7. Direct Decomposition of Halides and Reduction of Meta	
in Non-Thermal Plasma	469
7.4.8. Kinetics of Dissociation of Metal Halides in Non-Therma	
Plasma: Distribution of Halides over Oxidation Degrees	470
7.4.9. Heterogeneous Stabilization of Products During Direct	
Decomposition of Metal Halides in Non-Thermal Plasma	7.2.6.
Application of Plasma Centrifuges for Product Quenching	g 472
7.5. Plasma-Chemical Synthesis of Nitrides and Carbides of Inorgani	ic
Materials	472
7.5.1. Plasma-Chemical Synthesis of Metal Nitrides from	
Elements: Gas-Phase and Heterogeneous Reaction	
Mechanisms	472
7.5.2. Synthesis of Nitrides of Titanium and Other Elements by	7.2.9.
Plasma-Chemical Conversion of Their Chlorides	473
7.5.3. Synthesis of Silicon Nitride (Si ₃ N ₄) and Oxynitrides by	
Non-Thermal Plasma Conversion of Silane (SiH ₄)	474
7.5.4. Production of Metal Carbides by Solid-Phase Synthesis in	
Thermal Plasma of Inert Gases	475
7.5.5. Synthesis of Metal Carbides by Reaction of Solid Metal	0 1 6 7 4 2
Oxides with Gaseous Hydrocarbons in Thermal Plasma	475
7.5.6. Gas-Phase Synthesis of Carbides in Plasma-Chemical	
Reactions of Halides with Hydrocarbons	475
7.5.7. Conversion of Solid Oxides into Carbides Using Gaseour	
Hydrocarbons Inside of RF-ICP Thermal Plasma Discharg	še
and Some Other Plasma Technologies for Carbide	
Synthesis	477
7.6. Plasma-Chemical Production of Inorganic Oxides by Thermal	
Decomposition of Minerals, Aqueous Solutions, and Conversio	
Processes	477
7.6.1. Plasma Production of Zirconia (ZrO ₂) by Decomposition	
of Zircon Sand (ZrSiO ₄)	477
7.6.2. Plasma Production of Manganese Oxide (MnO) by	
Decomposition of Rhodonite (MnSiO ₃)	478

8

	7.6.3.	Plasma-Chemical Extraction of Nickel from Serpentine	
		Minerals	482
	7.6.4.	Production of Uranium Oxide (U ₃ O ₈) by Thermal Plasma	
		Decomposition of Uranyl Nitrate (UO ₂ (NO ₃) ₂) Aqueous	
		Solutions	482
	7.6.5.	Production of Magnesium Oxide (MgO) by Thermal	
		Plasma Decomposition of Aqueous Solution or Melt of	
		Magnesium Nitrate $(Mg(NO_3)_2)$	483
	7.6.6.	Plasma-Chemical Production of Oxide Powders for	
		Synthesis of High-Temperature Superconducting	
		Composites	483
	7.6.7.	Production of Uranium Oxide (U_3O_8) by Thermal Plasma	
		Conversion of Uranium Hexafluoride (UF ₆) with Water	
		Vapor	484
	7.6.8.	Conversion of Silicon Tetrafluoride (SiF ₄) with Water	
		Vapor into Silica (SiO ₂) and HF in Thermal Plasma	484
	7.6.9.	Production of Pigment Titanium Dioxide (TiO ₂) by	
		Thermal Plasma Conversion of Titanium Tetrachloride	
		(TiCl ₄) in Oxygen	485
	7.6.10.	Thermal Plasma Conversion of Halides in Production of	
		Individual and Mixed Oxides of Chromium, Aluminum,	
		and Titanium	486
	7.6.11.	Thermal Plasma Treatment of Phosphates: Tricalcium	
		Phosphate $(Ca_3(PO_4)_2)$ and Fluoroapatite $(Ca_5F(PO_4)_3)$	487
	7.6.12.	Oxidation of Phosphorus and Production of Phosphorus	
		Oxides in Air Plasma	488
7.7.	Plasma	-Chemical Production of Hydrides, Borides, Carbonyls,	
		ther Compounds of Inorganic Materials	488
	7.7.1.	Production of Hydrides in Thermal and Non-Thermal	
		Plasma	488
	7.7.2.	Non-Thermal Plasma Mechanisms of Hydride Formation	
		by Hydrogen Gasification of Elements and by	
		Hydrogenation of Thin Films	489
	7.7.3.	Synthesis of Metal Carbonyls in Non-Thermal Plasma:	
		Effect of Vibrational Excitation of CO Molecules on	
		Carbonyl Synthesis	490
	7.7.4.	Plasma-Chemical Synthesis of Borides of Inorganic	
		Materials	492
	7.7.5.	Synthesis of Intermetallic Compounds in Thermal Plasma	493
7.8.	Plasma	Cutting, Welding, Melting, and Other High-Temperature	
		nic Material Processing Technologies	493
	7.8.1.	Plasma Cutting Technology	493
	7.8.2.	Plasma Welding Technology	494
	7.8.3.	About Plasma Melting and Remelting of Metals	495
	7.8.4.		495
		ms and Concept Questions	496
		Photosoft (Electrobati Spirity antiduteto gotta) familie ?	
		urface Processing of Inorganic Materials: Micro- and	6.8557
		hnologies	499
8.1.		al Plasma Spraying	499
	8.1.1.	Plasma Spraying as a Thermal Spray Technology	499

	8.1.2.	DC-Arc Plasma Spray: Air Plasma Spray	500
	8.1.3.	DC-Arc Plasma Spray: VPS, LPPS, CAPS, SPS, UPS, and	
		Other Specific Spray Approaches	501
	8.1.4.	Radiofrequency Plasma Spray	502
		Thermal Plasma Spraying of Monolithic Materials	503
		Thermal Plasma Spraying of Composite Materials	505
	8.1.7.	Thermal Spray Technologies: Reactive Plasma Spray	419
	0.1.7.	Forming	507
	8.1.8.	Thermal Plasma Spraying of Functionally Gradient	507
	0.1.0.	Materials	508
	010		
0.0		Thermal Plasma Spray Modeling	510
8.2.		-Chemical Etching: Mechanisms and Kinetics	510
	8.2.1.	Main Principles of Plasma Etching as Part of Integrated	
		Circuit Fabrication Technology	510
	8.2.2.		
		Requirements	511
	8.2.3.	Basic Plasma Etch Processes: Sputtering	514
	8.2.4.	Basic Plasma Etch Processes: Pure Chemical Etching	515
	8.2.5.	Basic Plasma Etch Processes: Ion Energy-Driven Etching	516
	8.2.6.	Basic Plasma Etch Processes: Ion-Enhanced Inhibitor	
		Etching	516
	8.2.7.	Surface Kinetics of Etching Processes; Kinetics of Ion	
		Energy-Driven Etching	517
	8.2.8.		472
	0.2.0.	RF Diodes and Triodes, and MERIEs	519
	829	Discharges Applied for Plasma Etching: High-Density	517
	0.2.7.	Plasma Sources	520
	0210		520
	0.2.10.	Discharge Kinetics in Etching Processes: Ion Density and	520
		Ion Flux in most be been been been been been been been	520
	8.2.11.	Discharge Kinetics in Etching Processes: Density and Flux	50.1
		of Neutral Etchants	521
8.3.		c Plasma-Chemical Etching Processes	523
	8.3.1.	Gas Composition in Plasma Etching Processes:	
		Etchants-to-Unsaturates Flux Ratio	523
	8.3.2.	Pure Chemical F-Atom Etching of Silicon: Flamm	
		Formulas and Doping Effect	523
	8.3.3.	Ion Energy-Driven F-Atom Etching Process: Main Etching	
		Mechanisms	524
	8.3.4.	Plasma Etching of Silicon in CF4 Discharges: Kinetics of	
		Fluorine Atoms	525
	8.3.5.	Plasma Etching of Silicon in CF4 Discharges: Kinetics of	Inor
	0.0.01	CF_x Radicals and Competition Between Etching and	
		Carbon Deposition	526
	076		528
		Plasma Etching of Silicon by Cl Atoms	
		Plasma Etching of SiO ₂ by F Atoms and CF_x Radicals	529
		Plasma Etching of Silicon Nitride (Si ₃ N ₄)	529
		Plasma Etching of Aluminum	529
		Plasma Etching of Photoresist	530
		Plasma Etching of Refractory Metals and Semiconductors	530
8.4.	Plasma	Cleaning of CVD and Etching Reactors in	
	Micro-	Electronics and Other Plasma Cleaning Processes	531

	8.4.1.	In Situ Plasma Cleaning in Micro-Electronics and Related	
		Environmental Issues	531
	8.4.2.	Remote Plasma Cleaning Technology in Microelectronics:	
		Choice of Cleaning Feedstock Gas	532
	8.4.3.	Kinetics of F-Atom Generation from NF ₃ , CF_4 , and C_2F_6 in	
		Remote Plasma Sources	533
	8.4.4.	Surface and Volume Recombination of F Atoms in	
		Transport Tube	535
	8.4.5.	Effectiveness of F Atom Transportation from Remote	
		Plasma Source	538
	8.4.6.	Other Plasma Cleaning Processes: Passive Plasma Cleaning	539
		Other Plasma Cleaning Processes: Active Plasma Cleaning	540
		Wettability Improvement of Metallic Surfaces by Active and	
		Passive Plasma Cleaning	541
8.5.	Plasm	a Deposition Processes: Plasma-Enhanced Chemical Vapor	
		sition and Sputtering Deposition	541
	8.5.1.	The second all second delivery first second all seconds and	
		Principles	541
	8.5.2.	A Manual Manual Manual Provide States and Annual Manual Manual States and Annual States and Annual States and A	542
	8.5.3.	The state of the s	
		(SiH ₄) Discharges	543
	8.5.4.		
		Direct Silicon Oxidation	545
	8.5.5.		
		PECVD from Silane–Oxygen Feedstock Mixtures and	
		Conformal and Non-Conformal Deposition Within	
		Trenches	545
	8.5.6.	Plasma Processes of Silicon Oxide (SiO ₂) Film Growth:	
		PECVD from TEOS-O2 Feed-Gas Mixtures	547
	8.5.7.		547
	8.5.8.		548
	8.5.9.		548
		0. Reactive Sputter Deposition Processes	549
		I. Kinetics of Reactive Sputter Deposition: Hysteresis Effect	550
8.6.		nplantation Processes: Ion-Beam Implantation and	
-		na-Immersion Ion Implantation	551
		Ion-Beam Implantation	551
		Plasma-Immersion Ion Implantation: General Principles	552
	8.6.3.	Real and the second s	
		Implantation: From Matrix Sheath to Child Law Sheath	553
	8.6.4	The same should be taken of the same of Diversion of Construction and the same state of the same state	555
	8.6.5		556
	8.6.6		
	0.0.0	Plasma Source Ion Implantation	557
87	Micro	parc (Electrolytic-Spark) Oxidation Coating and Other	in the C
0.7.		odischarge Surface Processing Systems	557
	8.7.1		557
	0.7.1	Features	557
	8.7.2		557
	0.7.2	Oxidation Process	558
			550

	8.	7.3.	Mechanism of Microarc (Electrolytic-Spark) Oxidation	
			Coating of Aluminum in Sulfuric Acid	559
	8.	7.4.	Breakdown of Oxide Film and Starting Microarc	
			Discharge	560
	8.	7.5.	Microarc Discharge Plasma Chemistry of Oxide Coating	
			Deposition on Aluminum in Concentrated Sulfuric Acid	
			Electrolyte	562
	8.		Direct Micropatterning and Microfabrication in	
			Atmospheric-Pressure Microdischarges	563
	8.		Microetching, Microdeposition, and Microsurface	
			Modification by Atmospheric-Pressure Microplasma	
			Discharges	564
	8.8. Pl	asma	a Nanotechnologies: Nanoparticles and Dusty Plasmas	566
			Nanoparticles in Plasma: Kinetics of Dusty Plasma	510
			Formation in Low-Pressure Silane Discharges	566
	8.	8.2	Formation of Nanoparticles in Silane: Plasma Chemistry of	
			Birth and Catastrophic Evolution	567
	8	83	Critical Phenomena in Dusty Plasma Kinetics: Nucleation	507
	0.	0.0.	of Nanoparticles, Winchester Mechanism, and Growth of	
			First Generation of Negative Ion Clusters	570
	8	84	Critical Size of Primary Nanoparticles in Silane Plasma	572
			Critical Phenomenon of Neutral-Particle Trapping in Silane	572
	0.	0.5.	Plasma	573
	8	86	Critical Phenomenon of Super-Small Nanoparticle	575
	0.	0.0.	Coagulation	575
	8	87	Critical Change of Plasma Parameters due to Formation of	575
	0.	0.7.	Nanoparticles: $\alpha - \gamma$ Transition	577
	8	8.8	Other Processes of Plasma Production of Nanoparticles:	577
	0.	0.0.	Synthesis of Aluminum Nanopowder and Luminescent	
			Silicon Quantum Dots	579
	0	00	Plasma Synthesis of Nanocomposite Particles	580
			a Nanotechnologies: Synthesis of Fullerenes and Carbon	300
			tubes	581
				201
	0.	7.1.	Highly Organized Carbon Nanostructures: Fullerenes and Carbon Nanotubes	581
	0	0.2		583
			Plasma Synthesis of Fullerenes	
			Plasma Synthesis of Endohedral Fullerenes	583
	8.	9.4.	Plasma Synthesis of Carbon Nanotubes by Dispersion of	504
	0	0.5	Thermal Arc Electrodes	584
	8.	9.5.	Plasma Synthesis of Carbon Nanotubes by Dissociation of	504
	0	~ ~	Carbon Compounds	584
			Surface Modification of Carbon Nanotubes by RF Plasma	585
	Pi	roble	ems and Concept Questions	586
9	Orga	nic a	and Polymer Plasma Chemistry	589
1	-		nal Plasma Pyrolysis of Methane and Other Hydrocarbons:	507
			iction of Acetylene and Ethylene	589
			Kinetics of Thermal Plasma Pyrolysis of Methane and	307
	1.		Other Hydrocarbons: The Kassel Mechanism	589
	0	12		
	9.	1.2.	Kinetics of Double-Step Plasma Pyrolysis of Hydrocarbons	591

	9.1.3. Electric Cracking of Natural Gas with Production of Acetylene–Hydrogen or Acetylene–Ethylene–Hydrogen	501
	Mixtures 9.1.4. Other Processes and Regimes of Hydrocarbon Conversion	591
	in Thermal Plasma 9.1.5. Some Chemical Engineering Aspects of Plasma Pyrolysis of	592
	Hydrocarbons	595
	9.1.6. Production of Vinyl Chloride as an Example of Technology	
	Based on Thermal Plasma Pyrolysis of Hydrocarbons	596
	9.1.7. Plasma Pyrolysis of Hydrocarbons with Production of Soot	19
	and Hydrogen	597
	9.1.8. Thermal Plasma Production of Acetylene by Carbon Vapor	500
	Reaction with Hydrogen or Methane	598
9.2.	Conversion of Methane into Acetylene and Other Processes of	
	Gas-Phase Conversion of Hydrocarbons in Non-Thermal Plasmas	598
	9.2.1. Energy Efficiency of CH ₄ Conversion into Acetylene in	
	Thermal and Non-Thermal Plasmas	598
	9.2.2. High-Efficiency CH_4 Conversion into C_2H_2 in	-
	Non-Thermal Moderate-Pressure Microwave Discharges	598
	9.2.3. Limits of Quasi-Equilibrium Kassel Kinetics for Plasma	
	Conversion of CH_4 into C_2H_2	600
	9.2.4. Contribution of Vibrational Excitation to Methane	
	Conversion into Acetylene in Non-Equilibrium Discharge	
	Conditions	601
	9.2.5. Non-Equilibrium Kinetics of Methane Conversion into	
	Acetylene Stimulated by Vibrational Excitation	602
	9.2.6. Other Processes of Decomposition, Elimination, and	
	Isomerization of Hydrocarbons in Non-Equilibrium Plasma:	
~ ~	Plasma Catalysis meneral diversion methods and a distribution and	603
9.3.	Plasma Synthesis and Conversion of Organic Nitrogen	
	Compounds	604
	9.3.1. Synthesis of Dicyanogen (C_2N_2) from Carbon and	
	Nitrogen in Thermal Plasma	604
	9.3.2. Co-Production of Hydrogen Cyanide (HCN) and	
	Acetylene (C_2H_2) from Methane and Nitrogen in Thermal	2.8
	Plasma Systems	605
	9.3.3. Hydrogen Cyanide (HCN) Production from Methane and	
	Nitrogen in Non-Thermal Plasma	606
	9.3.4. Production of HCN and H_2 in CH_4 – NH_3 Mixture in	656
	Thermal and Non-Thermal Plasmas	608
	9.3.5. Thermal and Non-Thermal Plasma Conversion Processes	3.8
	in CO-N ₂ Mixture	609
	9.3.6. Other Non-Equilibrium Plasma Processes of Organic	
~ 1	Nitrogen Compounds Synthesis and Immediated to note the	
9.4.	Organic Plasma Chemistry of Chlorine and Fluorine Compounds	611
	9.4.1. Thermal Plasma Synthesis of Reactive Mixtures for	1.8
	Production of Vinyl Chloride	611
	9.4.2. Thermal Plasma Pyrolysis of Dichloroethane, Butyl	
	Chloride, Hexachlorane, and Other Organic Chlorine	
	Compounds for Further Synthesis of Vinyl Chloride	612
	9.4.3. Thermal Plasma Pyrolysis of Organic Fluorine Compounds	613

	9.4.4.	Pyrolysis of Organic Fluorine Compounds in Thermal Plasma of Nitrogen: Synthesis of Nitrogen-Containing	
		Fluorocarbons	614
	9.4.5.	Thermal Plasma Pyrolysis of Chlorofluorocarbons	614
	9.4.6.	Non-Thermal Plasma Conversion of CFCs and Other	
		Plasma Processes with Halogen-Containing Organic	
0.5	Diamon	Compounds	616
9.5.		Synthesis of Aldehydes, Alcohols, Organic Acids, and	(17
		Oxygen-Containing Organic Compounds	617
	9.5.1.	Non-Thermal Plasma Direct Synthesis of Methanol from	417
	0.5.2	Methane and Carbon Dioxide	617
	9.5.2.	Non-Thermal Plasma Direct Synthesis of Methanol from	0.1.564
		Methane and Water Vapor	617
	9.5.3.	Production of Formaldehyde (CH_2O) by CH_4 Oxidation	9.60 L.C
		in Thermal and Non-Thermal Plasmas	618
	9.5.4.	Non-Thermal Plasma Oxidation of Methane and Other	
		Hydrocarbons with Production of Methanol and Other	567
		Organic Compounds	619
	9.5.5.	Non-Thermal Plasma Synthesis of Aldehydes, Alcohols,	
		and Organic Acids in Mixtures of Carbon Oxides with	L.L.P.579
	114.1	Hydrogen: Organic Synthesis in CO ₂ –H ₂ O Mixture	620
	9.5.6.	Non-Thermal Plasma Production of Methane and	P.1.5
	1	Acetylene from Syngas (CO–H ₂)	621
9.6.		Chemical Polymerization of Hydrocarbons: Formation	
		Polymer Films	622
	9.6.1.	General Features of Plasma Polymerization	622
	9.6.2.	General Aspects of Mechanisms and Kinetics of Plasma	
		Polymerization	622
	9.6.3.	Initiation of Polymerization by Dissociation of	
		Hydrocarbons in Plasma Volume	623
	9.6.4.	Heterogeneous Mechanisms of Plasma-Chemical	
	Baxma	Polymerization of C_1/C_2 Hydrocarbons	625
	9.6.5.	Plasma-Initiated Chain Polymerization: Mechanisms of	
		Plasma Polymerization of Methyl Methacrylate	625
	9.6.6.	Plasma-Initiated Graft Polymerization	626
	9.6.7.	Formation of Polymer Macroparticles in Volume of	
		Non-Thermal Plasma in Hydrocarbons	627
	9.6.8.	Plasma-Chemical Reactors for Deposition of Thin	
		Polymer Films	628
	9.6.9.	Some Specific Properties of Plasma-Polymerized Films	628
		Electric Properties of Plasma-Polymerized Films	630
	9.6.11.	Some Specific Applications of Plasma-Polymerized Film	
		Deposition	631
9.7.	Interac	tion of Non-Thermal Plasma with Polymer Surfaces:	
		nentals of Plasma Modification of Polymers	632
		Plasma Treatment of Polymer Surfaces	632
	9.7.2.	Major Initial Chemical Products Created on Polymer	
		Surfaces During Their Interaction with Non-Thermal	
		Plasma	633

	9.7.3.	Kinetics of Formation of Main Chemical Products in Process of Polyethylene Treatment in Pulsed RF	
			(24
	074	Discharges	634
	9.7.4.	Kinetics of Polyethylene Treatment in Continuous RF	121
		Discharge	636
	9.7.5.	Non-Thermal Plasma Etching of Polymer Materials	636
	9.7.6.	Contribution of Electrons and Ultraviolet Radiation in the	9,9
		Chemical Effect of Plasma Treatment of Polymer Materials	637
	9.7.7.		
		Active Heavy Particles Generated in Non-Thermal Plasma	
		with Polymer Materials: Plasma-Chemical Oxidation of	
		Polymer Surfaces	638
	9.7.8.	Plasma-Chemical Nitrogenation of Polymer Surfaces	639
		Plasma-Chemical Fluorination of Polymer Surfaces	640
	9.7.10.	Synergetic Effect of Plasma-Generated Active	
		Atomic/Molecular Particles and UV Radiation During	
		Plasma Interaction with Polymers and Indianal Departure 40	640
	9.7.11.	Aging Effect in Plasma-Treated Polymers	641
9.8.	Applica	ations of Plasma Modification of Polymer Surfaces	641
	9.8.1.	Plasma Modification of Wettability of Polymer Surfaces	641
	9.8.2.	Plasma Enhancement of Adhesion of Polymer Surfaces:	
		Metallization of Polymer Surfaces	643
	9.8.3.	Plasma Modification of Polymer Fibers and Polymer	
		Membranes	645
	9.8.4.	Plasma Treatment of Textile Fibers: Treatment of Wool	645
	9.8.5.	Plasma Treatment of Textile Fibers: Treatment of Cotton	
		and Synthetic Textiles and the Lotus Effect	648
	9.8.6.	Specific Conditions and Results of Non-Thermal Plasma	01703
		Treatment of Textiles	649
	9.8.7.	Plasma-Chemical Processes for Final Fabric Treatment	649
	9.8.8.	Plasma-Chemical Treatment of Plastics, Rubber Materials,	703
	10.15	and Special Polymer Films	654
99	Plasma	Modification of Gas-Separating Polymer Membranes	655
	9.9.1.	Application of Polymer Membranes for Gas Separation:	000
	7.7.1.	Enhancement of Polymer Membrane Selectivity by Plasma	
		Polymerization and by Plasma Modification of Polymer	
		Surfaces	655
	992		055
	7.7.2.	Microwave Plasma System for Surface Modification of	656
	9.9.3.	Gas-Separating Polymer Membranes	030
	7.7.3.	Influence of Non-Thermal Discharge Treatment	
		Parameters on Permeability of Plasma-Modified	157
	004	Gas-Separating Polymer Membranes	657
	9.9.4.	Plasma Enhancement of Selectivity of Gas-Separating	(50
	005	Polymer Membranes	659
	9.9.5.		
		Gas-Separating Polymer Membranes by Microwave	
		Plasma Treatment	661
	9.9.6.	Theoretical Model of Modification of Polymer Membrane	
		Surfaces in After-Glow of Oxygen-Containing Plasma of	
		Non-Polymerizing Gases: Lame Equation	662

-		
CO	nte	nts

	9.9.7.	Elasticity/Electrostatics Similarity Approach to	
		Permeability of Plasma-Treated Polymer Membranes	663
	9.9.8.	Effect of Cross-Link's Mobility and Clusterization on	
		Permeability of Plasma-Treated Polymer Membranes	664
	9.9.9.	Modeling of Selectivity of Plasma-Treated Gas-Separating	
		Polymer Membranes	666
	9.9.10.	Effect of Initial Membrane Porosity on Selectivity	
		of Plasma-Treated Gas-Separating Polymer Membranes	667
	9.10. Plasm	a-Chemical Synthesis of Diamond Films	668
		General Features of Diamond-Film Production and	
		Deposition in Plasma	668
	9.10.2	Different Discharge Systems Applied for Synthesis of	
	953	Diamond Films	669
	9103	Non-Equilibrium Discharge Conditions and Gas-Phase	
		Plasma-Chemical Processes in the Systems Applied for	
		Synthesis of Diamond Films	671
	9104	Surface Chemical Processes of Diamond-Film Growth	0/1
	2.10.1	in Plasma	672
	9105	Kinetics of Diamond-Film Growth	673
		ms and Concept Questions	674
	FIODIE	and concept Questions	0/4
10	Plasma-C	hemical Fuel Conversion and Hydrogen Production	676
		a-Chemical Conversion of Methane, Ethane, Propane, and	0.001
		ral Gas into Syngas (CO– H_2) and Other Hydrogen-Rich	
	Mixtu		676
		General Features of Plasma-Assisted Production of	0.0
	10.1.1.	Hydrogen from Hydrocarbons: Plasma Catalysis	676
	1012	Syngas Production by Partial Oxidation of Methane in	0/0
	10.1.2	Different Non-Equilibrium Plasma Discharges, Application	
		of Gliding Arc Stabilized in Reverse Vortex (Tornado)	
		Flow	678
	1013	. Plasma Catalysis for Syngas Production by Partial	070
	10.1.5		
		Oxidation of Methane in Non-Equilibrium Gliding Arc	681
	1014	Stabilized in Reverse Vortex (Tornado) Flow	001
	10.1.4	Non-Equilibrium Plasma-Catalytic Syngas Production from	(02
	1015	Mixtures of Methane with Water Vapor	683
	10.1.5	Non-Equilibrium Plasma-Chemical Syngas Production	105
	10.1.4	from Mixtures of Methane with Carbon Dioxide	685
	10.1.6	Plasma-Catalytic Direct Decomposition (Pyrolysis) of	
		Ethane in Atmospheric-Pressure Microwave	0.0628
	9.6.10	Discharges	687
	10.1.7	. Plasma Catalysis in the Process of Hydrogen Production	
		by Direct Decomposition (Pyrolysis) of Methane	688
	10.1.8	. Mechanism of Plasma Catalysis of Direct CH4	
		Decomposition in Non-Equilibrium Discharges	689
	10.1.9	Plasma-Chemical Conversion of Propane,	
		Propane–Butane Mixtures, and Other Gaseous	
		Hydrocarbons to Syngas and Other Hydrogen-Rich	
		Mixtures	690
		T lixtui es	

10.2. Plasma-Chemical Reforming of Liquid Fuels into Syngas	
(CO–H ₂): On-Board Generation of Hydrogen-Rich Gases for	
Internal Combustion Engine Vehicles	692
10.2.1. Specific Applications of Plasma-Chemical Reforming of	
Liquid Automotive Fuels: On-Board Generation of	
Hydrogen-Rich Gases	692
10.2.2. Plasma-Catalytic Steam Conversion and Partial Oxidation	D1:
of Kerosene for Syngas Production	693
10.2.3. Plasma-Catalytic Conversion of Ethanol with Production of Syngas	694
10.2.4. Plasma-Stimulated Reforming of Diesel Fuel and Diesel	
Oils into Syngas	697
10.2.5. Plasma-Stimulated Reforming of Gasoline into	
Syngas and the Documentation in Planta and	698
10.2.6. Plasma-Stimulated Reforming of Aviation Fuels into Syngas	698
10.2.7. Plasma-Stimulated Partial Oxidation Reforming of	
Renewable Biomass: Biodiesel	699
10.2.8. Plasma-Stimulated Partial Oxidation Reforming of	
Bio-Oils and Other Renewable Biomass into Syngas	700
10.3. Combined Plasma–Catalytic Production of Hydrogen by Partial	
Oxidation of Hydrocarbon Fuels	701
10.3.1. Combined Plasma–Catalytic Approach Versus Plasma	
Catalysis in Processes of Hydrogen Production by Partial	01,751
Oxidation of Hydrocarbons A to mad S and the Hol	701
10.3.2. Pulsed-Corona-Based Combined Plasma–Catalytic System	
for Reforming of Hydrocarbon Fuel and Production of	700
Hydrogen-Rich Gases	702
10.3.3. Catalytic Partial Oxidation Reforming of Isooctane	703
10.3.4. Partial Oxidation Reforming of Isooctane Stimulated by	
Non-Equilibrium Atmospheric-Pressure Pulsed Corona	703
Discharge 10.3.5. Reforming of Isooctane and Hydrogen Production in	703
Pulsed-Corona-Based Combined Plasma–Catalytic	
System	704
10.3.6. Comparison of Isooctane Reforming in Plasma	704
Preprocessing and Plasma Postprocessing Configurations	
of the Combined Plasma–Catalytic System	706
10.4. Plasma-Chemical Conversion of Coal: Mechanisms, Kinetics, and	
Thermodynamics	707
10.4.1. Coal and Its Composition, Structure, and Conversion to	
Other Fuels	707
10.4.2. Thermal Conversion of Coal	708
10.4.3. Transformations of Sulfur-Containing Compounds During	
Thermal Conversion of Coal	710
10.4.4. Transformations of Nitrogen-Containing Compounds	
During Thermal Conversion of Coal	711
10.4.5. Thermodynamic Analysis of Coal Conversion in Thermal	
Plasma Plasma	711
10.4.6. Kinetic Phases of Coal Conversion in Thermal Plasma	712

10.4.7.	Kinetic Analysis of Thermal Plasma Conversion of Coal: Kinetic Features of the Major Phases of Coal Conversion	
	in Plasma	714
10.4.8.	Coal Conversion in Non-Thermal Plasma	715
10.5. Therm	nal and Non-Thermal Plasma-Chemical Systems for Coal	
Conve	ersion	716
10.5.1.	General Characteristics of Coal Conversion in Thermal	
	Plasma Jets	716
10.5.2.	Thermal Plasma Jet Pyrolysis of Coal in Argon, Hydrogen,	
	and Their Mixtures: Plasma Jet Production of Acetylene	
	from Coal	716
10.5.3	Heating of Coal Particles and Acetylene Quenching	
	During Pyrolysis of Coal in Argon and Hydrogen Plasma	
	ets	719
1054	Pyrolysis of Coal in Thermal Nitrogen Plasma Jet with	/1/
10.5.1.	Co-Production of Acetylene and Hydrogen Cyanide	721
1055	Coal Gasification in a Thermal Plasma Jet of Water Vapor	721
	Coal Gasification by H_2O and Syngas Production in	721
10.5.6.		
	Thermal Plasma Jets: Application of Steam Plasma Jets and	722
1057	Plasma Jets of Other Gases	722
	Coal Gasification in Steam–Oxygen and Air Plasma Jets	724
	Conversion of Coal Directly in Electric Arcs	724
10.5.9.	Direct Pyrolysis of Coal with Production of Acetylene	70.4
	(C_2H_2) in Arc Plasma of Argon and Hydrogen	724
10.5.10.	Direct Gasification of Coal with Production of Syngas	101010
	(H ₂ –CO) in Electric Arc Plasma of Water Vapor	725
10.5.11.	Coal Conversion in Non-Equilibrium Plasma of	0/0
	Microwave Discharges	726
10.5.12.	Coal Conversion in Non-Equilibrium Microwave	
	Discharges Containing Water Vapor or Nitrogen	728
10.5.13.	Coal Conversion in Low-Pressure Glow and Other	
	Strongly Non-Equilibrium Non-Thermal Discharges	730
10.5.14.	Plasma-Chemical Coal Conversion in Corona and	
	Dielectric Barrier Discharges	731
10.6. Energy	and Hydrogen Production from Hydrocarbons with	
Carbo	n Bonding in Solid Suboxides and without CO ₂ Emission	732
10.6.1.	Highly Ecological Hydrogen Production by Partial	
	Oxidation of Hydrocarbons without CO ₂ Emission:	
	Plasma Generation of Carbon Suboxides	732
10.6.2.	Thermodynamics of the Conversion of Hydrocarbons	
	into Hydrogen with Production of Carbon Suboxides and	
	without CO ₂ Emission	732
10.6.3.	Plasma-Chemical Conversion of Methane and Coal into	
	Carbon Suboxide	734
10.6.4.	Mechanochemical Mechanism of Partial Oxidation of	
	Coal with Formation of Suboxides	735
10.6.5.	Kinetics of Mechanochemical Partial Oxidation of Coal to	
211	Carbon Suboxides	736
10.6.6.	Biomass Conversion into Hydrogen with the Production	01696
	of Carbon Suboxides and Without CO ₂ Emission	737

П

10.7. Hydrogen Sulfide Decomposition in Plasma with Production of Hydrogen and Sulfur: Technological Aspects of Plasma-Chemical	
Hydrogen Production	738
10.7.1. H_2S Dissociation in Plasma with Production of Hydrogen	11.803
and Elemental Sulfur and Its Industrial Applications	738
10.7.2. Application of Microwave, Radiofrequency, and Arc	750
Discharges for H_2S Dissociation with Production of	740
Hydrogen and Elemental Sulfur	740
10.7.3. Technological Aspects of Plasma-Chemical Dissociation of	
Hydrogen Sulfide with Production of Hydrogen and	11.805
Elemental Sulfur	741
10.7.4. Kinetics of H ₂ S Decomposition in Plasma	744
10.7.5. Non-Equilibrium Clusterization in a Centrifugal Field and	
Its Effect on H ₂ S Decomposition in Plasma with	
Production of Hydrogen and Condensed-Phase Elemental	
Sulfur	745
10.7.6. Influence of the Centrifugal Field on Average Cluster	
Sizes: Centrifugal Effect Criterion for Energy Efficiency of	
H_2S Decomposition in Plasma	748
10.7.7. Effect of Additives (CO_2 , O_2 , and Hydrocarbons) on	
Plasma-Chemical Decomposition of H_2S	749
10.7.8. Technological Aspects of H_2 Production from Water in	117
	751
Double-Step and Multi-Step Plasma-Chemical Cycles	753
Problems and Concept Questions	133
Plasma Chemistry in Energy Systems and Environmental	
Control	755
11.1. Plasma Ignition and Stabilization of Flames	755
11.1.1. General Features of Plasma-Assisted Ignition and	/55
Combustion	755
	757
11.1.2. Experiments with Plasma Ignition of Supersonic Flows	131
11.1.3. Non-Equilibrium Plasma Ignition of Fast and Transonic	750
Flows: Low-Temperature Fuel Oxidation Versus Ignition	758
11.1.4. Plasma Sustaining of Combustion in Low-Speed Gas Flows	760
11.1.5. Kinetic Features of Plasma-Assisted Ignition and	
Combustion	761
11.1.6. Combined Non-Thermal/Quasi-Thermal Mechanism of	
Flame Ignition and Stabilization: "Zebra" Ignition and	
Application of Non-Equilibrium Magnetic Gliding Arc	
Discharges	763
11.1.7. Magnetic Gliding Arc Discharge Ignition of Counterflow	
Flame	765
11.1.8. Plasma Ignition and Stabilization of Combustion of	
Pulverized Coal: Application for Boiler Furnaces	768
11.2. Mechanisms and Kinetics of Plasma-Stimulated Combustion	770
11.2.1. Contribution of Different Plasma-Generated Chemically	
Active Species in Non-Equilibrium Plasma Ignition and	
Stabilization of Flames	770
	//0
11.2.2. Numerical Analysis of Contribution of Plasma-Generated Radicals to Stimulate Ignition	770

11.2.3. Possibility of Plasma-Stimulated Ignition Below the	
Auto-Ignition Limit: Conventional Kinetic Mechanisms of	
Explosion of Hydrogen and Hydrocarbons	771
11.2.4. Plasma Ignition in H ₂ –O ₂ –He Mixtures	773
II.2.5. Plasma Ignition in Hydrocarbon–Air Mixtures	774
11.2.6. Analysis of Subthreshold Plasma Ignition Initiated	
Thermally: The "Bootstrap" Effect	775
11.2.7. Subthreshold Ignition Initiated by Plasma-Generated	
Radicals	776
11.2.8. Subthreshold Ignition Initiated by Plasma-Generated	
Excited Species	778
11.2.9. Contribution of Plasma-Excited Molecules into	101
Suppressing HO_2 Formation During Subthreshold Plasma	
Ignition of Hydrogen	779
11.2.10. Subthreshold Plasma Ignition of Hydrogen Stimulated by	
Excited Molecules Through Dissociation of HO ₂	781
11.2.11. Subthreshold Plasma Ignition of Ethylene Stimulated by	701
	702
Excited Molecules Effect of NO	783
11.2.12. Contribution of lons in the Subthreshold Plasma Ignition	784
11.2.13. Energy Efficiency of Plasma-Assisted Combustion in	705
Ram/Scramjet Engines	785
11.3. Ion and Plasma Thrusters	787
11.3.1. General Features of Electric Propulsion: Ion and Plasma	
Thrusters	787
11.3.2. Optimal Specific Impulse of an Electric Rocket Engine	788
11.3.3. Electric Rocket Engines Based on Ion Thrusters	789
11.3.4. Classification of Plasma Thrusters: Electrothermal Plasma	Land Street
Thrusters	790
11.3.5. Electrostatic Plasma Thrusters	791
II.3.6. Magneto-Plasma-Dynamic Thrusters	791
11.3.7. Pulsed Plasma Thrusters	792
11.4. Plasma Applications in High-Speed Aerodynamics	792
11.4.1. Plasma Interaction with High-Speed Flows and Shocks	792
11.4.2. Plasma Effects on Shockwave Structure and Velocity	793
11.4.3. Plasma Aerodynamic Effects in Ballistic Range Tests	793
11.4.4. Global Thermal Effects: Diffuse Discharges	795
11.4.5. High-Speed Aerodynamic Effects of Filamentary	
Discharges	795
11.4.6. Aerodynamic Effects of Surface and Dielectric Barrier	
Discharges: Aerodynamic Plasma Actuators	797
11.4.7. Plasma Application for Inlet Shock Control:	
Magneto-Hydrodynamics in Flow Control and Power	
Extraction	798
11.4.8. Plasma Jet Injection in High-Speed Aerodynamics	799
11.5. Magneto-Hydrodynamic Generators and Other Plasma Systems	
of Power Electronics	799
11.5.1. Plasma Power Electronics	799
11.5.2. Plasma MHD Generators in Power Electronics: Different	736
Types of MHD Generators	800
11.5.3. Major Electric and Thermodynamic Characteristics of	737
MHD Generators	801

xxxiv

11.5.4.	Electric Conductivity of Working Fluid in Plasma MHD	
	Generators	802
11.5.5.	Plasma Thermionic Converters of Thermal Energy into	
	Electricity: Plasma Chemistry of Cesium	803
11.5.6.	Gas-Discharge Commutation Devices	804
11.6. Plasma	Chemistry in Lasers and Light Sources	804
11.6.1.	Classification of Lasers: Inversion Mechanisms in Gas and	
	Plasma Lasers and Lasers on Self-Limited Transitions	804
11.6.2.	Pulse-Periodic Self-Limited Lasers on Metal Vapors and	
	on Molecular Transitions	805
11.6.3.	Quasi-Stationary Inversion in Collisional Gas-Discharge	
	Lasers: Excitation by Long-Lifetime Particles and Radiative	
	Deactivation	806
1164	Ionic Gas-Discharge Lasers of Low Pressure: Argon and	
11.0.1.	He–Ne Lasers	806
1165	Inversion Mechanisms in Plasma Recombination Regime:	000
11.0.5.	Plasma Lasers	807
1144		007
11.0.0.	Plasma Lasers Using Electronic Transitions: He–Cd,	007
1177	He–Zn, He–Sr, and Penning Lasers	807
	Plasma Lasers Based on Atomic Transitions of Xe and on	000
	Transitions of Multi-Charged Ions	808
	Excimer Lasers	809
11.6.9.	Gas-Discharge Lasers Using Vibrational–Rotational	
	Transitions: CO ₂ Lasers	810
11.6.10.	Gas-Discharge Lasers Using Vibrational–Rotational	
	Transitions: CO Lasers	811
	Plasma Stimulation of Chemical Lasers	811
11.6.12.	Energy Efficiency of Chemical Lasers: Chemical Lasers	
	with Excitation Transfer	812
11.6.13.	Plasma Sources of Radiation with High Spectral Brightness	814
11.6.14.	Mercury-Containing and Mercury-Free Plasma Lamps	815
11.6.15.	Plasma Display Panels and Plasma TV	816
11.7. Non-7	Thermal Plasma in Environmental Control: Cleaning	
Exhau	st Gas of SO ₂ and NO _x \sim	817
11.7.1.	Industrial SO ₂ Emissions and Plasma Effectiveness of	
	Cleaning Them	817
11.7.2.	Plasma-Chemical SO ₂ Oxidation to SO ₃ in Air and	
	Exhaust Gas Cleaning Using Relativistic Electron	
	Beams	818
11.7.3.	SO ₂ Oxidation in Air to SO ₃ Using Continuous and	
	Pulsed Corona Discharges	819
1174	Plasma-Stimulated Liquid-Phase Chain Oxidation of SO_2	0.00
	in Droplets	820
1281175	Plasma-Catalytic Chain Oxidation of SO ₂ in Clusters	822
	Simplified Mechanism and Energy Balance of the	022
11.7.0.		
	Plasma-Catalytic Chain Oxidation of SO ₂ in Clusters	022
1177		823
228	Plasma-Stimulated Combined Oxidation of NO_x and SO_2	
	in Air: Simultaneous Industrial Exhaust Gas Cleaning of	
	Nitrogen and Sulfur Oxides	824

	11.7.8.	Plasma-Assisted After Treatment of Automotive Exhaust:	
		Kinetic Mechanism of Double-Stage Plasma-Catalytic	
		NO _x and Hydrocarbon Remediation	825
	11.7.9.	Plasma-Assisted Catalytic Reduction of NO _x in	
		Automotive Exhaust Using Pulsed Corona Discharge:	
		Cleaning of Diesel Engine Exhaust	827
	118 Non-T	Thermal Plasma Treatment of Volatile Organic Compound	027
		ons, and Some Other Plasma-Ecological Technologies	830
		General Features of the Non-Thermal Plasma Treatment	050
	11.0.1.	of Volatile Organic Compound Emissions	830
	1102	•	
	11.0.2.	Mechanisms and Energy Balance of the Non-Thermal	
		Plasma Treatment of VOC Emissions: Treatment of	
		Exhaust Gases from Paper Mills and Wood Processing	
		Plants	830
	11.8.3.	Removal of Acetone and Methanol from Air Using Pulsed	
		Corona Discharge	832
	11.8.4.	Removal of Dimethyl Sulfide from Air Using Pulsed	
		Corona Discharge	833
	11.8.5.	Removal of α -Pinene from Air Using Pulsed Corona	
		Discharge; Plasma Treatment of Exhaust Gas Mixtures	835
	11.8.6.	Treatment of Paper Mill Exhaust Gases Using Wet Pulsed	
		Corona Discharge	836
	11.8.7.	Non-Thermal Plasma Control of Diluted Large-Volume	
		Emissions of Chlorine-Containing VOCs	839
	11.8.8.	Non-Thermal Plasma Removal of Elemental Mercury	
		from Coal-Fired Power Plants and Other Industrial	
		Offgases	843
	11.8.9.	Mechanism of Non-Thermal Plasma Removal of	A 1 0 0 0
	0101115	Elemental Mercury from Exhaust Gases	844
	11810	Plasma Decomposition of Freons	011
	11.0.10.	(Chlorofluorocarbons) and Other Waste Treatment	
		Processes Organized in Thermal and Transitional	
		Discharges	045
	Problem		845
	Froblen	ns and Concept Questions	846
12	Plasma Bi	ology and Plasma Medicine	848
		Thermal Plasma Sterilization of Different Surfaces:	040
		unisms of Plasma Sterilization	848
		Application of Low-Pressure Plasma for Biological	070
	12.1.1.	Sterilization	040
	1212		848
	12.1.2.	Inactivation of Micro-Organisms by Non-Equilibrium	050
	12.1.2	High-Pressure Plasma	850
	02812.1.3.	Plasma Species and Factors Active for Sterilization: Direct	798
	822	Effect of Charged Particles	851
	12.1.4.	Plasma Species and Factors Active for Sterilization: Effects	
		of Electric Fields, Particularly Related to Charged Plasma	799
	- 6581 (5.1.	Particles	854
	12.1.5.	Plasma Species and Factors Active for Sterilization: Effect	
		of Reactive Neutral Species	855
	12.1.6.	Plasma Species and Factors Active for Sterilization: Effects	
		of Heat	858

	12.1.7.	Plasma Species and Factors Active for Sterilization: Effect	050
		of Ultraviolet Radiation	858
12.2.		of Atmospheric-Pressure Air Plasma on Bacteria and	
		Direct Versus Indirect Treatment, Surface Versus In-Depth	
		nent, and Apoptosis Versus Necrosis	859
	12.2.1.	Direct and Indirect Effects of Non-Thermal Plasma on	
		Bacteria	859
	12.2.2.	Two Experiments Proving Higher Effectiveness of Direct	
		Plasma Treatment of Bacteria	862
	12.2.3.	Surface Versus In-Depth Plasma Sterilization: Penetration	
		of DBD Treatment into Fluid for Biomedical Applications	863
	1224	Apoptosis Versus Necrosis in Plasma Treatment of Cells:	
	12.2.1.	Sublethal Plasma Treatment Effects	865
122	Non 7	Thermal Plasma Sterilization of Air Streams: Kinetics of	005
12.3.			0//
		a Inactivation of Biological Micro-Organisms	866
	12.3.1.	General Features of Plasma Inactivation of Airborne	
		Bacteria	866
	12.3.2.	Pathogen Detection and Remediation Facility for Plasma	
		Sterilization of Air Streams	867
	12.3.3.	Special DBD Configuration – the Dielectric Barrier	
		Grating Discharge – Applied in PDRF for Plasma	
		Sterilization of Air Streams	869
	12.3.4.	Rapid and Direct Plasma Deactivation of Airborne	
		Bacteria in the PDRF	870
	1235	Phenomenological Kinetic Model of Non-Thermal Plasma	Chicrosoft
	12.0.0.	Sterilization of Air Streams	871
	1224		0/1
	12.3.0.	Kinetics and Mechanisms of Rapid Plasma Deactivation of	872
10.4	DI	Airborne Bacteria in the PDRF	0/2
12.4		a Cleaning and Sterilization of Water: Special Discharges in	074
		Water Applied for Its Cleaning and Sterilization	874
	12.4.1.	Needs and General Features of Plasma Water Treatment:	
		Water Disinfection Using UV Radiation, Ozone, or	
		Pulsed Electric Fields	874
		Electrical Discharges in Water	875
	12.4.3.	Mechanisms and Characteristics of Plasma Discharges in	
		Water	876
	12.4.4.	Physical Kinetics of Water Breakdown	878
		Experimental Applications of Pulsed Plasma Discharges	
		for Water Treatment	879
	1246	Energy-Effective Water Treatment Using Pulsed Spark	k serves
	12.1.0.	Discharges	880
125	Placm		
12.5		a-Assisted Tissue Engineering	882
	12.5.1.	Plasma-Assisted Regulation of Biological Properties of	000
	10 5 0	Medical Polymer Materials	882
	12.5.2.	Plasma-Assisted Attachment and Proliferation of Bone	
		Cells on Polymer Scaffolds	884
	12.5.3	DBD Plasma Effect on Attachment and Proliferation of	
		Osteoblasts Cultured over Poly-&-Caprolactone	
		Scaffolds	885
	12.5.4	Controlling of Stem Cell Behavior on Non-Thermal	
		Plasma Modified Polymer Surfaces	887

12.5.5. Plasma-Assisted Bio-Active Liquid Microxerography,	
Plasma Bioprinter	888
12.6. Animal and Human Living Tissue Sterilization	888
12.6.1. Direct Plasma Medicine: Floating-Electrode Dielectric	
Barrier Discharge	888
12.6.2. Direct Plasma-Medical Sterilization of Living Tissue Using	
FE-DBD Plasma	889
12.6.3. Non-Damage (Toxicity) Analysis of Direct Plasma	
Treatment of Living Tissue	890
12.7. Non-Thermal Plasma-Assisted Blood Coagulation	892
12.7.1. General Features of Plasma-Assisted Blood Coagulation	892
12.7.2. Experiments with Non-Thermal Atmospheric-Pressure	
Plasma-Assisted In Vitro Blood Coagulation	892
12.7.3. In Vivo Blood Coagulation Using FE-DBD Plasma	893
12.7.4. Mechanisms of Non-Thermal Plasma-Assisted Blood	
Coagulation	894
12.8. Plasma-Assisted Wound Healing and Tissue Regeneration	896
12.8.1. Discharge Systems for Air-Plasma Surgery and Nitrogen	
Oxide (NO) Therapy	896
12.8.2. Medical Use of Plasma-Generated Exogenic NO	898
12.8.3. Experimental Investigations of NO Effect on Wound	
Healing and Inflammatory Processes	899
12.8.4. Clinical Aspects of Use of Air Plasma and Exogenic NO in	
Treatment of Wound Pathologies	900
12.8.5. Air Plasma and Exogenic NO in Treatment of	
Inflammatory and Destructive Illnesses	904
12.9. Non-Thermal Plasma Treatment of Skin Diseases	906
12.9.1. Non-Thermal Plasma Treatment of Melanoma Skin	
Cancer Cancer Constant Constant Constant Constant Constant	906
12.9.2. Non-Thermal Plasma Treatment of Cutaneous	
Leishmaniasis	908
12.9.3. Non-Equilibrium Plasma Treatment of Corneal Infections	910
12.9.4. Remarks on the Non-Thermal Plasma-Medical Treatment	
of Skin	911
Problems and Concept Questions	912
References	915
Index	963