
624.343.13 V 69

SYNCHRO ENGINEERING HANDBOOK

A. R. UPSON A.M.I.E.E.
SENIOR DEVELOPMENT ENGINEER
Muirhead Servo Laboratory

J. H. BATCHELOR M.A. Oxon CHIEF ENGINEER Muirhead Servo Laboratory

1 4 ABR 1983

MUIRHEAD & CO LIMITED BECKENHAM KENT ENGLAND

MUIRHEAD INSTRUMENTS INC.
MOUNTAINSIDE N.J. U.S.A.

MUIRHEAD INSTRUMENTS LIMITED STRATFORD ONTARIO

ENDPAPERS Illustrate Muirhead elements discussed in this work

Remote positioning of low torque mechanisms i Remote control of servomechanisms	1
Remote positioning of low torque mechanisms in Remote control of servomechanisms	xi xii ge 1
Remote control of servomechanisms	xi xii ge 1
	xii ge 1
Compaction	ge 1
	1
$Pa_{\mathcal{B}}$	1
Torque Synchros	
Control Synchros	2 4 7 8 9
Servomotors	7
A.C. Tachometer Generators	Ŕ
Differentials	a
Resolvers 1	ıí
Slab Synchros 1	12
	13
	13
i j	13 14
11	14 14
Hall Effect Synchros	Ľ¥
Chapter 2 NOMENCLATURE AND FRAME SIZES 1	17
	17
	17
	20
	$\frac{1}{20}$
	20
Servomotor, tachometer generator and motor tachometer	
	22
Standard servomotor and tachometer generator symbols (in	
accordance with MIL-S-22820)	22
Servomotor, tachometer generator and motor tachometer	
	22
	$\frac{-}{22}$
	${23}$
	23

	78.43	Page
	Muirhead symbols denoting type of instrument	23
	Variations in mechanical and electrical characteristics	24
Chapter 3	TORQUE SYNCHROS	25
	Torque gradient	28
	Pull out torque	28
	Maximum torque for continuous operation	29
	The use of torque instruments of different sizes	30
	Synchronizing time	31
	Receiver error	31
	Maximum operating speed	31
	Improving accuracy by gearing	32
	Pointer display systems	33
	Coarse-fine pointer systems	33
	Torque Transmitter and Torque Receiver — Constructional	
	details	33
	Torque Differential Transmitter	37
	Torque Differential Receiver	38
	Methods of reversing rotation	38
	Maximum number of torque receivers on a torque trans-	
	mitter	40
	Reduction in torque gradient	40
	Receiver error when torque receivers are paralleled	41
	Temperature rise in the transmitter	41
	Circulating currents caused by variations between synchros	41
	Transmission over long distances	41
	Maximum number of differentials in a torque chain	42
	Size 18 Synchro Receiver Indicator	43
	Control rod indicators	44
Chapter 4	CONTROL SYNCHROS	45
	Control Transmitter	45
	Control Transformer	46
	Transformation ratio	47
	Electrical error (Control Transmitter and Control Trans-	
	former)	48
	Residual voltage	48
	Effect of speed	51
	Control Differential Transmitter	52
	Electrical error (Control Differential Transmitter)	52
	Phase shift through the chain	53
	Use of phasing condensers	53
	Reduction in voltage gradient for parallel operation of con-	
	trol transformers	53
	Methods of calculating circuit conditions of control chains	53

	Manissana la dan dha dan an air	Page
	Maximum load on the transmitter	56
	Methods of changing rotation	56
	Relative phase of control transformer output voltage	58
	Typical Synchro Control Chains (Fig. 65)	60
Chapter 5	SERVOMOTORS AND TACHOMETER GENERATORS	67
	Induction motor characteristics	67
	The servomotor	69
	Inherent damping	71
	A.C. servomotor construction	72
	Choice of supply frequency	73
	A.C. servomotor temperature rise	73
	Standard servomotor rotation	74
	Definition and terms associated with servomotors	74
	Transfer function of an a.c. servomotor	76
	Effects of control winding source impedance on characteris-	
	tics	76
	Tachometer Generator	77
	Linearity	79
	Residual voltage	80
	Integrating tachometer generator	81
	Effects of temperature	81
	Effects of changes in voltage	81
	Effects of changes in frequency	82
	Tachometer Generator construction	82
	Drag cup servomotors	83
	Inertially damped motor	83
	Hysteresis motor	84
	Typical servomotor characteristics	87
Chapter 6	BASIC SERVO SYSTEMS	91
-	Simple a.c. remote position servo system	91
	Response to step function input	93
	Frequency response	94
	Velocity lags	95
	Methods of damping the system	96
	Rate servos	98
	Integrating servos	99
	Mechanical integrator	99
	The use of synchros in d.c. servo systems	100
	Static errors in position servo	102
	Coarse-fine servo systems	102
	Coarse-fine switching methods	105
	'Stick-off' voltage	108

		Page
Chapter 7	RESOLVERS AND OTHER RELATED INSTRUMENTS	110
	Standardization	111
	Computing resolvers	111
	Non-feedback resolvers	111
	Resistance compensation	114
	Uncompensated resolvers in cascade	115
	Feedback resolvers	115
	Polar to cartesian co-ordinate conversion	116
	Cartesian to polar conversion	117
	Co-ordinate rotation	118
	Data transmission	119
	Phase shifting	119
	Sweep resolvers	120
	Output equations	121
	Definitions of resolver parameters	122
	Transformation ratio and transformation ratio error	122
	Electrical zero	123
	Inter axis errors	123
	Resolution error and angular accuracy	123
	The Linvar	126
Chapter 8	SYNCHRO AND SERVOMOTOR INSTALLATION	
	PRACTICES	130
	Body mountings	131
	Clamp assemblies	131
	Mounting by panel screws	132
	Zeroing ring	133
	Adapter assembly	134
	Clamping disc	135
	Heat dissipation	135
	Terminal screws	136
	Shaft drives	136
	Plain shafts	137
Chapter 9	SPECIFICATIONS	138
	United States military specifications	138
	N.A.T.O. specifications	139
	Society of Automotive Engineers	140
	British specifications on synchros	140
	Summary of servomotor, motor tachometer and tachometer	
	generator specifications	141
	Summary of resolver specifications	142
Chapter 10	TESTING — PRODUCTION TESTS	144
•	Electrical tests	144
	Brush contact resistance variation	144

		Page
	High potential test	145
	Insulation resistance	145
	Dielectric tests	145
	Primary current and power	146
	Transformation ratio and phase shift	146
	Establishment of electrical zero	146
	Electrical error tests	148
	Indexing fixtures used in electrical error tests	149
	Synchro test equipment	151
	Energizing transmitter	152
	Alternative methods of measuring electrical error	152
	Null voltage	153
	Receiver error test	154
	Torque gradient	156
	Synchronizing time (or self-aligning time)	158
	Spinning Test	158
	-18	
Chapter 11	TESTING — TYPE APPROVAL TESTS	159
1	Summary of environmental requirements of the Defence	
	Specification A.C. Data Transmission Synchros	159
	MIL-S-20708A	165
	MIL-S-0020708B	165
	Quality assurance tests	165
	Electrical error measurements during environmental tests	170
	Impedance measuring circuits	170
Chapter 12	MAGSLIPS	174
	Magslip terminology	174
	Coincidence Transmitter	174
	Follow Through Transmitter	175
	Synchronous Link Transmitter and Receiver	175
	Hunter	175
	Follow Through Supply Transmitter	176
	X Co	176
	Resolvers	177
	Other Magslip instruments	177
	Frame sizes	177
	Mark numbers	177
	Terminal mouldings	180
	Zero position of torque and control instruments	180
	Magslip and synchro zero positions	181
	Methods of reversing Magslips	182
	Brush slipring contacts	183
	Ligaments	184
	Bearings	184
	Damner wheels	184

	34	Page
	Mounting practices	184
	Shaft mounting	186
	Magslip Receivers	187
Chapter 13	S SERVO SYSTEM DESIGN CONSIDERATIONS	188
	Choice of synchro frame sizes	188
	Synchro mounting methods	188
	Gear errors	189
	Choice of gear ratio	191
	Static error of system	191
	Response time	192
	Coarse fine servos	192
	Use of gear ratio that is not an integer	192
	Mechanical differential	193
	Methods of coupling shafts	193
	Gearheads	196
	Methods of adding signals	196
	Earthing	190
	Phase shift	198
	Power factor correction of motor control winding	190
	60 c/s components on 50 c/s	200
Chapter 14	APPLICATIONS	201
	Flight Simulator: Co-ordinate Conversion and Velocity	201
	Servos	907
	Multra Control System for Ship Stabilization: Addition of	201
	Angular and Velocity Functions	902
	Rolling Mill Control Gear — Control of a Beam Mill by	203
	Coarse and Fine Synchros	905
	Nuclear Reactor Control Rod Indicators: Synchros for use	205
	in Nuclear Reactors	907
	Aircraft Instruments: Gyrosyn Compass Zero Reader	207
	Doppler Direction Finder — Measurement of Phase	209
	System for Synchronizing Propellers — Use of the Mono-	211
	diff	212
Chapter 15	REVERSALS	01"
•	Rules for reversals in control chains	215
01 7.5		223
Chapter 16	STEPPER MOTORS	225
	'3-Phase' Instruments	225
	'2-Phase' Instruments	225
	Stepper Motor Characteristics	227
	Stepping Transmitters	227
	H-100 Stepping Transmitter	229
	Transmitter — Stepper Motor Operation	220

	Page
Solid State Switching	229
Operating at various speeds	230
Applications	230
Frame Sizes	230