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Abstract: This paper presents the comparison between two strategies to build an AC-DC transfer scale. It is 
shown that an overdetermined scheme has some advantages over a simple one, though more time 
consuming. Three statistical tools are introduced to discard bad standards or measurements and to calculate 
uncertainty contributions. We compared the contributed uncertainties for both methods and results of their to 
an AC-DC current transfer scale. 
 
 
1. INTRODUCTION 
 
AC-DC current (or voltage) scales are built using the 
well known step-up-and-down procedures. At a 
medium level (typically 10 mA or 1 V), a set of well 
characterized thermal converters are taken as the 
basis of the system. For them, the AC-DC transfer 
difference is evaluated theoretically or determined in 
another lab. At other current (or voltage) levels, 
standards are calibrated against the standards of the 
neighboring range. The only assumption made is 
that the ac-dc transfer difference of each standard 
remains constant along its current (or voltage) 
range, from the reduced current (or voltage) at which 
it is calibrated against the neighboring standard to its 
higher rated current (or voltage).  
A decision to be taken is the selection of the step-up 
strategy. Two basic approaches are possible: a 
direct one, where the largest possible jump is made 
with only one standard or an overdetermined 
scheme in which the jumps are made with more than 
one standard and the AC-DC transfer difference are 
overdetermined at each level.  Fig 1 shows the two 
schemes for a current step-up that will be used 
further as examples. 
 
2. THE DIRECT SCHEME 
 
The AC-DC transfer difference of the standard being 
calibrated at level i, δi, is calculated as  

dii δδδ += −1       (1) 
where δi-1 is the AC-DC transfer difference of the 
standard coming from the previous step, and δd is 
the measured difference between both standards. 
The standard uncertainty of δI  is calculated as  
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where u(δI-1) is the uncertainty of the standard 
coming from the previous step, u(δA) is the standard 

deviation of the measurements, u(δC) is the 
uncertainty contributed by the comparison system 
(i.e, linearity of nanovoltmeters, exponents of TCs), 
u(δS) is the uncertainty contributed by the 
measurement set-up (i.e, guarding, connectors) and 
u(δL) is the standard uncertainty contributed by the 
level dependence of the standard. In this method 
u(δS) and u(δL) are estimated from previous 
experience or indirectly evaluated, but, to some 
extent, subjectively. 
 
3. THE OVERDETERMINED SCHEME 
 
The overdetermined scheme is currently used at 
INTI. At 10 mA, five PTB thin-film multijunction 
thermal converters (PMJTCs), two of them together 
with shunts, are the basis of the system.  The  
determination of the AC-DC transfer difference of 
the 5 PMJTCs depends on the frequency range. At 
audio  frequencies ( 100 Hz < f ≤ 20 kHz ) , the five 
PMJTC are compared among them and the mean 
value or the AC-DC transfer difference of three ( 1, 2 
and 3) of the five PMJTCs are taken as zero. Hence, 
the following system of equations results 
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  (3) 

where a,b,c,d,e,f, and h are the measured AC-DC 
transfer differences. The best solution [δ’] is 
obtained using a modified least square method [1]. 
In this method the comparison statistic uncertainty 
and the lack of agreement of the fitting process are 
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included in the uncertainty calculation. This lack of 
agreement is attributed to the changes of 
connections and positions of the standards in the 
measuring setup. At higher frequencies    
( 20 kHz < f ≤ 1 MHz ) the assigned value to TC-1 in 
a calibration against the PTB standards is used as a 
reference. To obtain the AC-DC transfer difference 
value of each standard, the equation system is 
solved using the least square method. Below 
100 Hz, a different strategy is used out of the scope 
of this paper [2]. 
To step-up, we used two standards to jump from one 
range to the other. At the highest range of the leap, 
one of these standards is at its rated power and the 
other one is at a quarter of it.  The redundancy is 
necessary for the statistical tools that will be 
introduced. At each current level a system of 
equations is obtained. For instance, at 50 mA we 
get, 
 

4

6
´

7 4
´
6

1 1 0
1 0 1

0 1 1
1 0 0
0 1 0

a
b
c

δ
δ
δ δ

δ

− ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ =− ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

    (4) 

 
i.e                  [ ] [ ] [ ]BA =⋅ δ          (5) 
where δ´4 and δ´6   are the values obtained for these 
standards in the previous steps. Using the least 
square method 

( ) BCBAAA' ⋅=⋅⋅⋅=
− TT 1δ                        (6) 

   (3)  
The residual vector B A δ ′− ⋅  represents the lack of 
fit of the model. Its associated uncertainty can be 
quantified from the residual sum of squares and the 
residual variance  

dfSSSS step /ˆ   ;AB 2 =′⋅−= σδ         (7) 
where df,  the number of degrees of freedom used to 
estimate the residual variance, is calculated as the 
number of rows minus the number of columns of A. 
The uncertainties of δ ′  are calculated as the square 
root of the diagonal terms of the covariance matrix 

TCBC ⋅⋅= )cov()'cov(δ     (8) 
and cov(B) is the covariance matrix of B. The 
diagonal terms of cov(B) are: 
 

)()()()var( 222
MiCiAiii uuub δδδ ++=    i=a,b,c (9) 

  
var (ii) = u2(δip)             i=d,e    (10) 
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Fig 1 -  Overdetermined AC-DC current step-up. In 
light blue is also shown one possible direct scheme 

with only one TC jumping between levels. 
 
where u(δA) is the Type A standard uncertainty 
associated to the repeatability of each bilateral 
comparison, u(δC) is the Type B standard uncertainty 
associated to the comparison system, u(δM) is the 
standard uncertainty of the scheme of the 
comparison, which, in our approach, can be 
estimated as the residual standard deviation of the 
least square fit, that is, 

2
stepM ˆ)i(u σ=                            (11) 
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and u(δip) is the standard uncertainty of the AC-DC 
transfer difference of the standards coming from the 
previous step [2]. The standard uncertainty of δi is  

( ) )cov( '´'
iiiu δδ =    (12) 

Both schemes require thermal converters with level 
independent   ac-dc differences and good stability of 
their ac-dc difference. The overdetermined scheme 
allows for the use of statistical tests to check these 
requirements quantitatively and objectively. 
 
3.1. Statistical Tests 
 
3.1.1. Testing the Level Dependence.   
We propose a way to test whether the AC-DC 
transfer difference of a standard does not depend on 
the current level. This test should be applied to all 
the pairs of standards used to go up ( or down) from 
one range to another. Let us suppose that two of 
these transfers, A and B, are used to go from a 
current level 1 to another level 2, and let us call A1 
and B1 their values in level 1, and A2 and B2 the 
corresponding values in level 2 (Fig.2). Both 
standards have been compared n times at both 
levels, and the averages and standard deviations of 
the measured differences have been calculated.  
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Fig.2.  Step with two transfers as reference 
 
If both standards are equally affected by the level 
change, the averages will be similar at both levels. If 
not so, we could conclude that one of them is more 
affected than the other one. Both PMJTCs are of 
similar design and technology but are used at quite 
different power, that is, different internal 
temperature. Thus, if it exists a change between 

1y and 2y  it can be assigned to the most powered 

PMJTC. To test if the difference between 1y  and 2y  
is statistically significant, a simple two-sample t-test 
for mean differences [3] is applied, based on the 
statistic  
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A value of |T| greater than a critical value t2n-2;α/2 
(which depends on a previously stated type of risk α)   

leads to conclude that the difference between the 
averages is statistically significant and, therefore, 
the level dependence must be considered an 
uncertainty component, assigned to the most 
powered standard. Otherwise, it can be assumed 
that the difference is negligible or attributed to 
random errors, which are contemplated in the least 
square calculation. For example, with the data from 
step 10 mA to 25 mA at 100 kHz, with n=12, 

91,101 =y , 32,132 =y , s1=0,79, s2=0,22, we obtain   
|T|=2,939.  If we use an  α = 0,05, t2n-2α/2 =2,074.  
Thus, |T|> t2n-2α/2, and we conclude that the 
difference between the averages is statistically 
significant.  Therefore, the uncertainty caused by 
this factor must be considered. Its standard 
uncertainty is estimated as 
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and incorporated to the uncertainty of the most 
powered standard.  
 
3.1.2. Testing the Consistency between Pairs of 
Standards.   
To verify that the values assigned to both reference 
standards A and B at the same step are consistent, 
we propose to compare the results obtained by 
solving the step twice, according to the following 
procedure:  
- First, the step is solved, considering both 
standards providing a link condition to the previous 
step. Let us call δAB the output vector of the step 
- Then, one of the link conditions is eliminated from 
the model (deleting one of the two last lines in the 
design matrix A). Therefore, other values will be 
obtained for all the transfers, δB 
Finally, both estimations are compared by means of 
the parameter En [4], 
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The standard uncertainty in the denominator must 
be calculated suppressing all the correlations 
between δAB andδAB. Values of En(i) greater than 2 
for any i express lack of consistence. . For example, 
at 50 mA 100 kHz, we obtain, 
δΑΒ={14.07; 19.15; 11.18} 
for the transfers PMJTC-4+SH-1, PMJTC-1+SH-3, 
PMJTC-3+SH-4, respectively. 
δΒ={15.65; 21.73; 13.26} 
|δΑΒ − δΒ| = {1.57; 2.58; 2.086} 
u(δΑΒ − δΒ) = {10.15; 10.14; 10.14} 
Therefore,  En={0.15; 0.25; 0.21} 
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As En  is always smaller that 2, we conclude that 
there is consistency between the two reference 
standards at this step. 
 
3.1.3. Testing the Stability of a Standard 
A statistical method to test the inner consistency of 
each step is proposed. If a transfer is not stable 
enough along the time when the measurements are 
performed, the least square fit will be poor and the 
residual standard deviation (7) will be too high. So, 
to test the hypothesis of consistency, it can be 
compared with the fit achieved from a reduced 
model. If one of the transfers is suspected of being 
unstable, it is discarded from the scheme. A reduced 
matrix Ar is obtained from A, by eliminating the 
column corresponding to the discarded standard, 
and all the rows related to the measurements in 
which this standard was involved. Also, a reduced 
vector of observations Br is obtained from B, and 
new estimations for the non-discarded transfers can 
be calculated.  
Following the same procedure than for the full 
model, the reduced sum of squares SSr, the reduced 
degrees of freedom dfr and the reduced residual 
variance 2

rσ̂ are obtained. Then, an F-statistic can 
be calculated as 

( ) ( )
rr

rr
dfSS

dfdfSSSS
F

−−
=                 (16) 

It can be shown that SS - SSr and SSr are distributed 
according to χ2 distributions with df - dfr and dfr 
degrees of freedom, respectively, and that both 
quantities are statistically independent [5]. Thus,  F 
is distributed according to a Fisher-Snedecor 
distribution with df-dfr degrees of freedom in the 
numerator and dfr degrees of freedom in the 
denominator [5].  
A type one risk α (the risk of detecting a non-existing 
instability) is previously stated. Thus, if the 
calculated value of F  is greater than the tabulated 
critical value fdf-dfr,dfr,α  we can conclude that the 
model consistency is significantly weaker for the full 
model than for the reduced one. Then, the lack of 
stability of the separated transfer can be considered 
significant. The power of the F-test –that is, the 
probability of detecting an actual lack of 
consistence- was evaluated by Monte Carlo 
simulations.  As an example, Fig. 4 shows the 
10 mA step with 5 transfers, where transfer 4 was 
evaluated as possibly unstable. Simulated results of 
measurements are obtained assigning random 
numbers to each pair-comparison in the step. Such 
random numbers are generated from gaussian 
distributions with a common mean value 0 and a 

common standard deviation σstep ,which is the 
combination of the Type A sources of uncertainty 
associated to the step (lack of fit and repeatability). 
During the simulation, one of the comparisons in 
which the suspected transfer participates was 
contaminated, adding increasing constant biases 
between 0 and 5⋅σstep. Then, for each value of 
contamination, the simulation was repeated M=5000 
times, recording when the contamination was 
detected by the F-test. Fig. 3 depicts that the F-test 
power is not good. For instance, the test for α=0.10 
detects a 3·σ contamination with a probability close 
to 26%.  
To increase the power of the method, we introduce a 
modification of the test based on the Monte Carlo 
simulation of the measurements. 
Each one of the comparisons presented in the step 
is repeated by the generation of N random numbers 
with gaussian distributions centered in the average 
of an actual measurement. Those generations are 
performed with a common standard deviation. 
Simulated versions of the F statistics F1 …FN  are  
computed by means of the same procedure that for 
the F-test. These copies of F could be used for 
statistical calculations. However, as the 
mathematical properties of F are hard to work with, 
we compute log(Fi) which has a probability 
distribution not so far from the gaussian one. So, the 
following statistics can be obtained 

( ) ( )
( )( ) NFlogs

Flog
T Flogµ−

=    (17) 

where ( )( )Flogs  is the sample standard deviation 

of  log(F1) … log(FN), and ( )Flogµ  is the theoretical 

expected value of  log(Fi), which can be calculated 
following the pdf of the F distribution [3], as follows 
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being n = df - dfr and m = dfr.  For instance, for the 
step as in Fig. 4, the test for transfer number 4 gives 
df = 4, dfr = 2, n = m = 2, and 
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The distribution of T can be approximated by a t one, 
with  N-1 degrees of freedom. So, the condition to 
conclude instability or lack of consistence in the step 
is  

α,NtT 1−>      (20) 
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The power of the T-test was evaluated for the same 
case and in a similar way than for the F-test. The 
results for 100000 simulations are shown in Fig 3.  
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Fig. 3 Power of the F anf T-tests. P is the 

percentage of detection and c is the contamination 
in σ  units. 

  
Note that, for each contamination, M⋅N simulations 
were needed: M values simulating the measurement 
results must be generated, and, for each one of 
these, N simulated Fi  must be  obtained.  
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Fig. 4 – Comparison of 5 standards at 10 mA, 10 

kHz. The values near the arrows are the measured 
values with their standard deviation in brackets 

 
Fig. 4 shows the results of the measurements at 
10 A at 1 kHz. If we apply eq. (13) to each standard 
suspected of being unstable we get T1=0,55, 
T2=0,25, T3=0,29, T4=2,2, T5=0,88. If we choose a 
type one of risk of 10%, we get critical t4,0.1=1,64 [3].  
As  T4 > 1.64,   we conclude that the transfer 4 is 
unstable and should be replaced. 
 
4. RESULTS 
 
The uncertainty was evaluated for the two schemes 
shown in Fig. 1. To show the contribution of the 
step-up clearly, the uncertainty of the basic 
standards at 10 mA was taken as zero. As an 
example, Table I depicts the contribution for the 
direct scheme at 5 A.  
The contributions for the overdetermined scheme 
are calculated from eq. (12). Table II shows the 
calculated uncertainties.  
 

Table I  Examples of uncertainties components for 
the direct method at 5 A in µA·A-1 

 
Component f = 1 kHz f = 20 kHz f =100 kHz

u(δA) 0,2 0,2 0,5 
u(δC) 0,2 0,2 0,5 
u(δS) 1 1 2 
u(δL) 1 2 4 

 
Table II  Standard uncertainties calculated for the 
direct (D) and the overdetermined (O) schemes in 

µA·A-1   
 

Standards f = 1 kHz f = 20 kHz f =100 kHz
 D O D O D O 

0,10 A 0,9 0,6 1,3 1,0 3,2 2,3 
0,6 A 1,2 0,7 1,8 1,1 3,9 2,7 
5 A 1,8 0,9 2,7 2,0 7,3 3,0 

 
  
5. CONCLUSIONS 
 
The use of an overdetermined scheme to step up 
allows for the use of statistical tests to assess the 
quality of a step-up scheme. Unstable or level 
dependant standards can be discarded with a base 
on objective numbers. Therefore, the contribution of 
the step-up to the uncertainty can be reduced. 
Besides, the uncertainty components can be 
calculated from the measurements. The direct 
method needs less measurements, but some 
uncertainty components must be estimated from the 
previous experience. 
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