Final Report Inter-American Metrology System (SIM) Regional Metrology Organization (RMO) Capacitance Comparison

SIM.EM-K4, 10 pF fused-silica standard capacitor at 1000 Hz and 1600 Hz SIM.EM-S4, 100 pF fused-silica standard capacitor at 1000 Hz and 1600 Hz SIM.EM-S3, 1000 pF nitrogen gas standard capacitor at 1000 Hz

Member Participants:

M. Cazabat	Argentina, INTI
L. M. Ogino, G. Kyriazis, R. T. B. Vasconcellos	Brazil, INMETRO
B. Wood, K. Kochav	Canada, NRC
H. Sanchez, B. I. Castro	Costa Rica, ICE
J. A. Moreno	Mexico, CENAM
A. Koffman, N. F. Zhang, Y. Wang, S. Shields	United States, NIST
D. Slomovitz, D. Izquierdo, C. Faverio	Uruguay, UTE

2003 – 2006 Comparison

Pilot Laboratory: National Institute of Standards and Technology

1. Introduction	
2. Traveling Standards	
3. Organization	2
4. Pilot Laboratory Measurement Results	3
5. Reported Results of Comparisons	6
6. References	15
Appendix A. Analysis Procedure	16
Appendix B. Analysis Results	17
Appendix C. Uncertainty Budgets for 10 pF	22
Appendix D. Uncertainty Budgets for 100 pF	
Appendix E. Uncertainty Budgets for 1000 pF	34
Appendix F. CCEM-K4 10 pF Capacitance Linkage Analysis and Results	38
Appendix G. Corrective Actions and Results	40
Appendix H. List of Participants	42
Appendix I. Photographs of included parts	43

1 Introduction

In order to strengthen the Interamerican Metrology System (SIM), interaction among its National Metrology Institutes (NMI's) must be promoted. At the same time, in accordance with the CIPM Mutual Recognition Agreement (MRA) objectives, NMI's must establish the degree of equivalence between their national measurement standards by performing regional comparisons, among other activities.

The objective of this comparison was to compare the measurement capabilities of NMI's within SIM in the field of capacitance. This action was aimed at determining the degree of equivalence of measuring capabilities in capacitance. The proposed test points were selected to evaluate the measuring capabilities of the participants, both their measurement standards and their measurement procedures.

SIM has undertaken three related capacitance comparisons. **SIM.EM-K4** is a comparison of a **10 pF** fused-silica standard at 1000 Hz and 1600 Hz. **SIM.EM-S4** is a comparison of a **100 pF** fused-silica standard at 1000 Hz and 1600 Hz. **SIM.EM-S3** is a comparison of a **1000 pF** nitrogen gas standard capacitor at 1000 Hz.

The participant institutes are listed in Table 1. The individual contacts are listed in Appendix I.

Table 1. Capacitance comparison participants

Country	Institute	Acronym
Argentina	Instituto Nacional de Technologia Industrial	INTI
Brazil	National Institute of Metrology Standardization	INMETRO
	and Industrial Quality	
Canada	National Research Council	NRC
Costa Rica	Instituto Costarricense de Electricidad	ICE
Mexico	Centro Nacional de Metrologia	CENAM
United States	National Institute of Standards and Technology	NIST
Uruguay	Administracion Nacional de Usinas y	UTE
	Transmissiones Electricas	

2 Traveling Standards

2.1 Description of the standards

The traveling standard for the SIM.EM-K4 comparison was an Andeen-Hagerling AH11A 10 pF fused-silica standard capacitor, with serial number 01238. The traveling standard for the SIM.EM-S4 was an Andeen-Hagerling AH11A 100 pF fused-silica standard capacitor with serial number 01237. Both the SIM.EM-K4 and SIM.EM-S4 traveling standards were housed in the Andeen-Hagerling AH1100 enclosure with serial number 00078. The traveling standard for the SIM.EM-S3 comparison was a General Radio GR1404-A 1000 pF nitrogen standard capacitor with serial number 2151.

The AH1100 enclosure contains a temperature controller to maintain stability of the AH11A standards. The enclosure must be powered on to operate. The AH1100 permits operation at voltages of 100 V, 120 V, 220 V, or 240 V. The proper fuse corresponding to the voltage of operation must be inserted into the fuse holder on the rear of the AH1100 enclosure prior to operation.

2.2 Transport Package Description

A wooden container was filled with polyurethane foam to hold the traveling standards and equipment. The parts contained in the transport package consisted of

- Andeen-Hagerling AH1100 enclosure SN 00078containing
 - o AH11A 100 pF fused-silica standard capacitor SN 01237
 - o AH11A 10 pF fused-silica standard capacitor SN 01238
- Power cord for AH1100 (110 V, three-prong)
- General Radio GR1404-A 1000 pF nitrogen standard capacitor SN 2151
- one set one-meter four-terminal-pair coaxial BNC cables
- one set one-meter three-terminal coaxial BNC cables
- two GR874-to-BNC adapters
- four female-to-female BNC connectors (barrels)
- two BNC T-connectors
- two BNC 90 degree (elbow) adapters
- two BNC male-to-alligator connectors
- one shorting cable for shorting the GR1404-A high terminal to case
- one box of five 0.5 Amp fuses for the AH1100 enclosure
- one bag of seven 0.25 Amp fuses for the AH1100 enclosure
- one AH1100/11A Operation and Maintenance Manual

Photographs of the parts included within the shipping container are shown in Appendix I.

2.3 Quantities to be measured

Participants measured the AH11A 10 pF and 100 pF standards at 1000 Hz and 1600 Hz. The GR1404-A 1000 pF standard was measured at 1000 Hz. All capacitance measurements with corresponding combined standard uncertainties were reported. Enclosure temperature was recorded with each AH11A measurement and ambient temperature was recorded with each GR1404-A measurement. At least five measurements were reported for each frequency point.

3 Organization

The National Institute of Standards and Technology (NIST) was the pilot laboratory for SIM.EM-K4, SIM.EM-S3, and SIM.EM-S4 comparisons. NIST used two measurement methods. One method employed an AH2700A Capacitance Bridge with AH11A 10 pF and 100 pF standards characterized over 50 Hz to 20 kHz as reference standards for the measurements. A direct substitution was used for this method. Measurements were taken on a traveling standard and a reference standard. The difference between the measured value of the reference and the

characterized value of the reference was added to the measured value of the traveling standard to achieve the reported value.

The second method employed the NIST two-pair capacitance bridge for accurate 1592 Hz measurements of the 10 pF and 100 pF AH11A traveling standards. This method was used sparingly to check the results of the substitution method.

In order to participate in the SIM.EM-K4 10 pF fused-silica measurement at 1000 Hz and 1600 Hz, participants were to have capacitance measurement capability (including reference) with a combined standard uncertainty of $500x10^{-6}$ at 1600 Hz. For participation in the SIM.EM-S4 100 pF fused-silica measurement at 1000 Hz and 1600 Hz, participants were to have capacitance measurement capability (including reference) with a combined standard uncertainty of $500x10^{-6}$ at 1600 Hz.

For participation in the SIM.EM-S3 1000 pF gas standard measurement at 1000 Hz, participants must have capacitance measurement capability (including reference) with a combined standard uncertainty of 1000×10^{-6} .

The traveling standards were measured at NIST at the beginning and ending of the comparison schedule. The traveling standards travelled regionally between participant laboratories, with two intermediate stops at NIST. The schedule of measurements is shown in Table 2.

TC 11	$^{\circ}$	0 1 1 1	C	
Lable	7	Schediii	e or	measurements

Laboratory	Approximate measurement dates	
NIST (United States)	November 2003 to April 2004	
CENAM (México)	July to August 2004	
ICE (Costa Rica)	September to November 2004	
NIST (United States)	December 2004 to February 2005	
INTI (Argentina)	March 2005	
UTE (Uruguay)	July 2005	
INMETRO (Brazil)	September 2005	
NIST (United States)	December 2005 to January 2006	
NRC (Canada)	February to March 2006	
NIST (United States)	May 2006 to March 2007	

4 Pilot Laboratory Measurement Results

The pilot laboratory measurement results are shown in Figures 1 through 5 below. Results at 1 kHz consist only of measurements from an Andeen-Hagerling AH2700A Capacitance Bridge. Results at 1.6 kHz consist of AH Bridge measurements as well as measurements from the NIST 2-pair Bridge.

4.1 SIM.EM-K4 10 pF results at 1 kHz

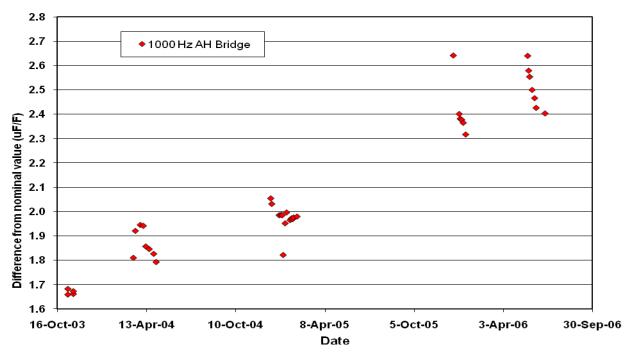


Fig. 1. Pilot laboratory measurements of AH11A SN 01238 10 pF standard capacitor at 1 kHz

4.2 SIM.EM-K4 10 pF results at 1.6 kHz

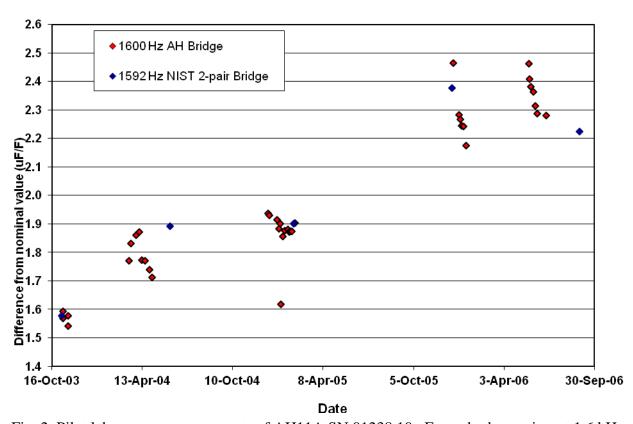


Fig. 2. Pilot laboratory measurements of AH11A SN 01238 10 pF standard capacitor at 1.6 kHz

4.3 SIM.EM-S4 100 pF results at 1 kHz

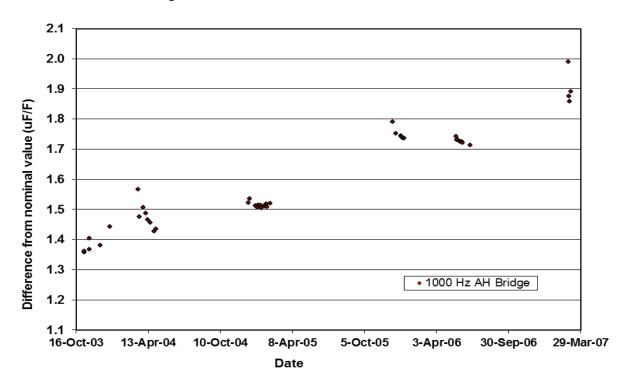


Fig. 3. Pilot laboratory measurements of AH11A SN 01237 100 pF standard capacitor at 1 kHz

4.4 SIM.EM-S4 100 pF results at 1.6 kHz

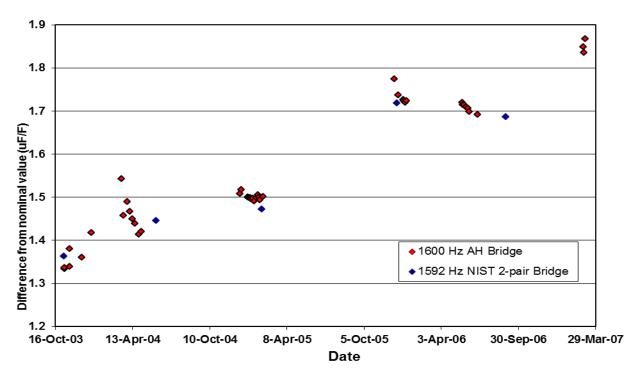


Fig. 4. Pilot laboratory measurements of AH11A SN 01237 100 pF standard capacitor at 1.6 kHz

4.5 SIM.EM-S3 1000 pF results at 1 kHz

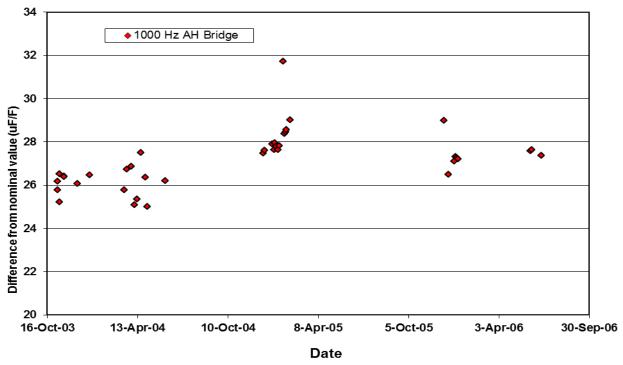


Fig. 5. Pilot laboratory measurements of GR1404-A SN 2151 1000 pF standard at 1 kHz

5 Reported Results of Comparisons

Seven laboratories participated in these comparisons and provided results. Two of these laboratories participated in follow-up bilateral comparisons with the pilot laboratory. Those two and another laboratory submitted corrected data after the submission of the Draft A report was circulated. Descriptions of these corrections are included in the appendix. Final analyses for these comparisons were performed using the corrected data. Corrected data are presented in the tables below and in accompanying figures.

5.1 SIM.EM-K4 10 pF results at 1 kHz

Table 3. Mean 1000 Hz measurement data for all participant laboratories.

Laboratory	Mean Date	Mean 1 kHz Capacitance Deviation	Combined Standard
		from Nominal Value (µF/F)	Uncertainty (µF/F)
NIST USA	2003.866	1.834	0.123
NIST USA	2004.273	1.868	0.123
CENAM Mexico	2004.574	1.967	0.17
ICE Costa Rica	2004.872	-2000	180000
NIST USA	2005.049	1.988	0.123
INTI Argentina	2005.219	2.65	0.4
UTE Uruguay	2005.521	-2.30	3.4

INMETRO Brazil	2005.726	2.299	0.2
NIST USA	2006.016	2.414	0.123
NRC Canada	2006.159	2. 689	0.079
NIST USA	2006.419	2.510	0.123

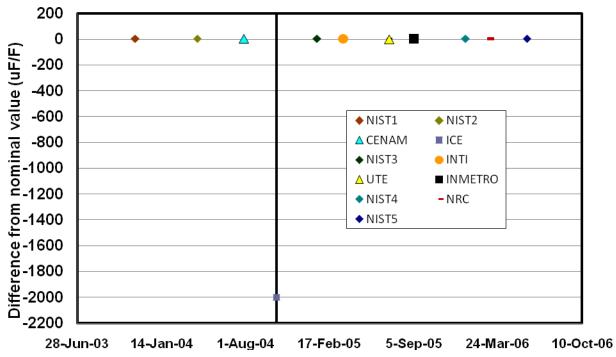


Fig. 6. All participant results of measurement of AH11A SN 01238 10 pF at 1 kHz

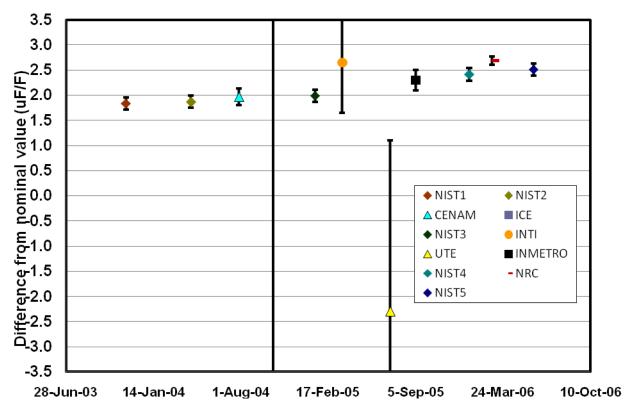


Fig. 7. Most participant results of measurement of AH11A SN 01238 10 pF at 1 kHz

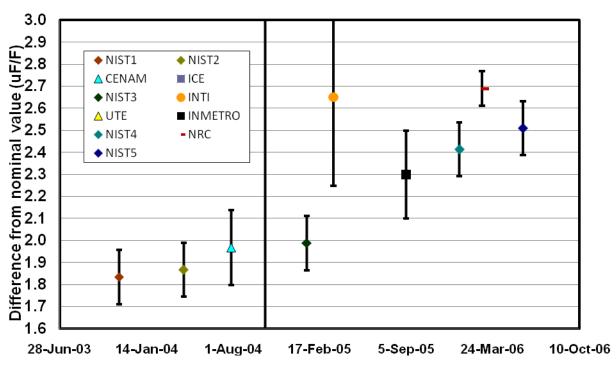


Fig. 8. Some participant results of measurement of AH11A SN 01238 10 pF at 1 kHz

5.2 SIM.EM-K4 10 pF results at 1.6 kHz

Table 4. Mean 1600 Hz measurement data for all participant laboratories.

Laboratory	Mean Date	Mean 1600 Hz Capacitance	Combined Standard
		Deviation from Nominal Value	Uncertainty (μF/F)
		(μF/F)	
NIST USA	2003.852	1.613	0.084
NIST USA	2004.273	1.791	0.114
CENAM Mexico	2004.568	1.822	0.17
ICE Costa Rica	2004.787	-2000	180000
NIST USA	2005.060	1.894	0.096
INTI Argentina	2005.219	1.510	0.35
UTE Uruguay		Did not participate	
INMETRO Brazil	2005.729	2.207	0.2
NIST USA	2005.995	2.324	0.093
NRC Canada	2006.159	2.847	0.069
NIST USA	2006.419	2.356	0.114

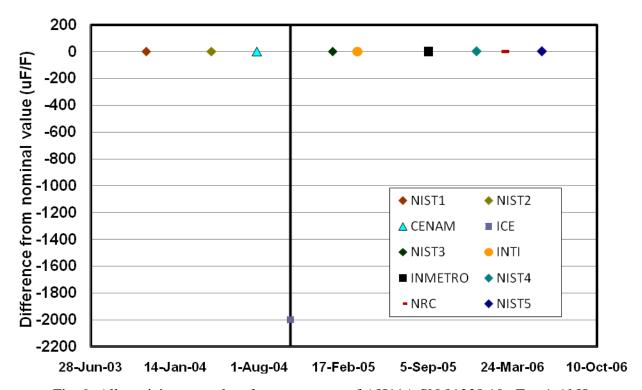


Fig. 9. All participant results of measurement of AH11A SN 01238 10 pF at 1.6 kHz

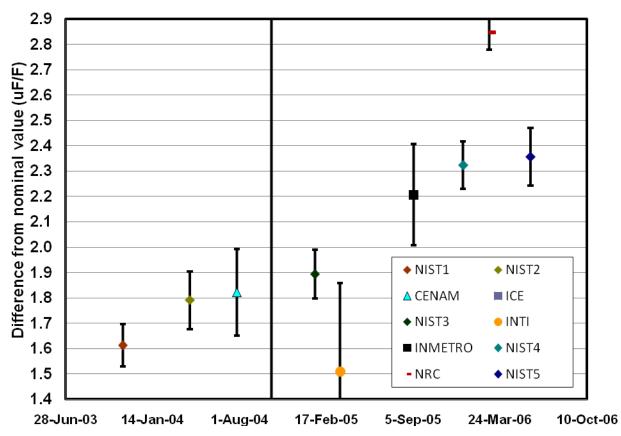


Fig. 10. Most participant results of measurement of AH11A SN 01238 10 pF at 1.6 kHz

5.3 SIM.EM-S4 100 pF results at 1 kHz

Table 5. Mean 1000 Hz measurement data for all participant laboratories.

Laboratory	Mean Date	Mean 1 kHz Capacitance Deviation	Combined Standard
		from Nominal Value (µF/F)	Uncertainty (μF/F)
NIST USA	2003.907	1.386	0.105
NIST USA	2004.273	1.477	0.105
CENAM Mexico	2004.571	0.970	0.19
ICE Costa Rica	2004.787	-600	19000
NIST USA	2005.047	1.515	0.105
INTI Argentina	2005.219	1.710	0.5
UTE Uruguay	2005.521	-1.200	3.3
INMETRO Brazil	2005.680	1.690	0.2
NIST USA	2006.003	1.750	0.105
NRC Canada	2006.159	2.190	0.110
NIST USA	2006.419	1.792	0.105

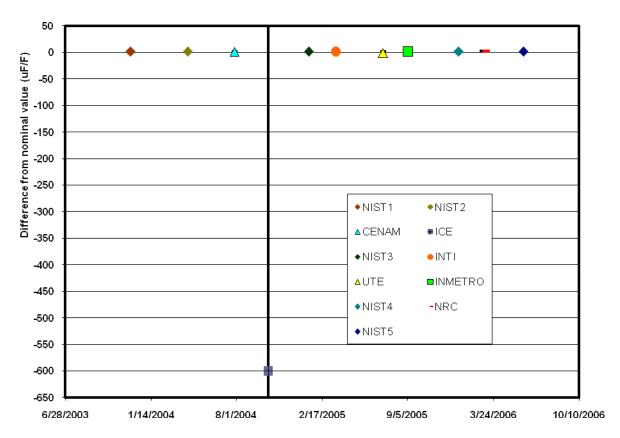


Fig. 11. All participant results of measurement of AH11A SN 01237 100 pF at 1 kHz

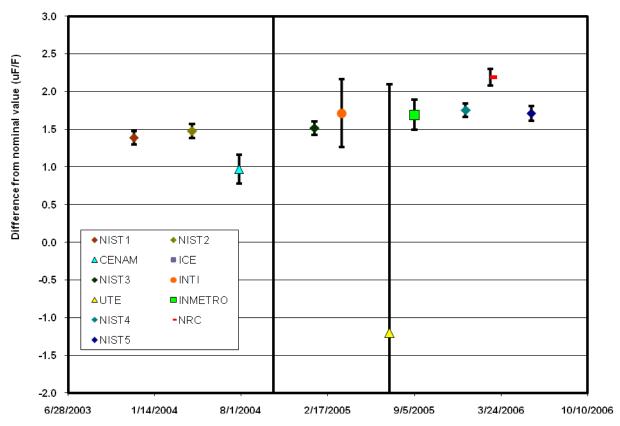


Fig. 12. Most participant results of measurement of AH11A SN 01237 100 pF at 1 kHz

5.4 SIM.EM-S4 100 pF results at 1.6 kHz

Table 6. Mean 1600 Hz measurement data for all participant laboratories.

10010 011110001	Tuble 6. Weath 1606 112 measurement data for all participant laboratories.			
Laboratory	Mean Date	Mean 1600 Hz Capacitance	Combined Standard	
		Deviation from Nominal Value	Uncertainty (µF/F)	
		(μF/F)		
NIST USA	2003.896	1.362	0.086	
NIST USA	2004.273	1.460	0.095	
CENAM Mexico	2004.568	1.380	0.190	
ICE Costa Rica	2004.787	-100	19000	
NIST USA	2005.052	1.499	0.092	
INTI Argentina	2005.222	0.580	0.450	
UTE Uruguay		Did not participate		
INMETRO Brazil	2005.682	1.650	0.200	
NIST USA	2005.997	1.732	0.089	
NRC Canada	2006.159	2.452	0.200	
NIST USA	2006.419	1.708	0.095	

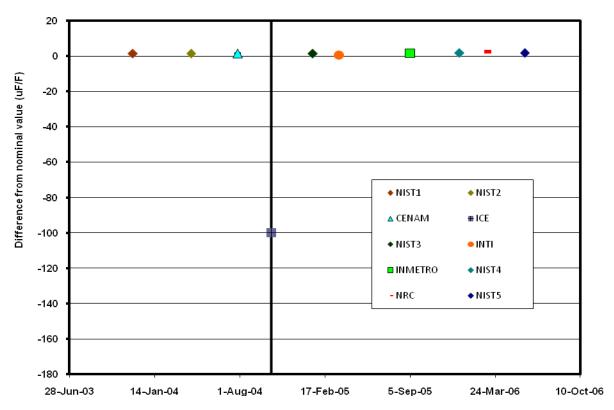


Fig. 13. All participant results of measurement of AH11A SN 01237 100 pF at 1.6 kHz

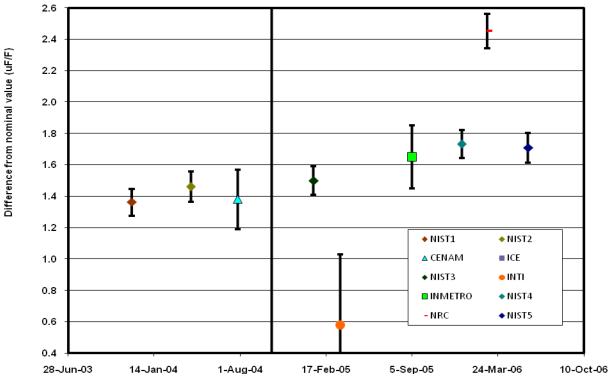


Fig. 14. Most participant results of measurement of AH11A SN 01237 100 pF at 1.6 kHz

5.5 SIM.EM-S3 1000 pF results at 1 kHz

Table 7. Mean 1000 Hz measurement data for all participant laboratories.

Laboratory	Mean	Mean 1 kHz Capacitance	Combined	Mean
	Date	Deviation from Nominal	Standard	Measurement
		Value (μF/F)	Uncertainty	Temperature
			(µF/F)	(degrees C)
NIST USA	2003.893	26.14	0.789	22.88
NIST USA	2004.292	26.10	0.789	22.84
CENAM Mexico	2004.571	25.67	0.250	23.02
ICE Costa Rica	2004.787	-220	1800	23.30
NIST USA	2005.047	28.31	0.789	23.01
INTI Argentina	2005.227	26.00	0.900	22.95
UTE Uruguay	2005.518	24.46	6.3	23.03
INMETRO Brazil	2005.688	25.41	0.200	22.10
NIST USA	2006.003	27.40	0.789	22.85
NRC Canada	2006.159	22.84	0.250	21.28
NIST USA	2006.449	27.54	0.789	22.80

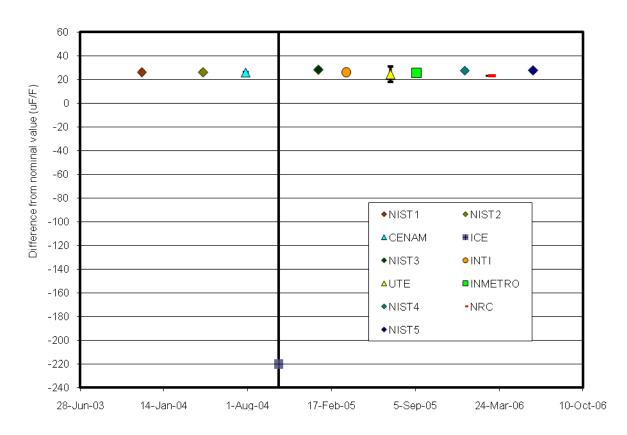


Fig. 15. All participant results of measurement of GR 1404-A SN 2151 1000 pF at 1 kHz

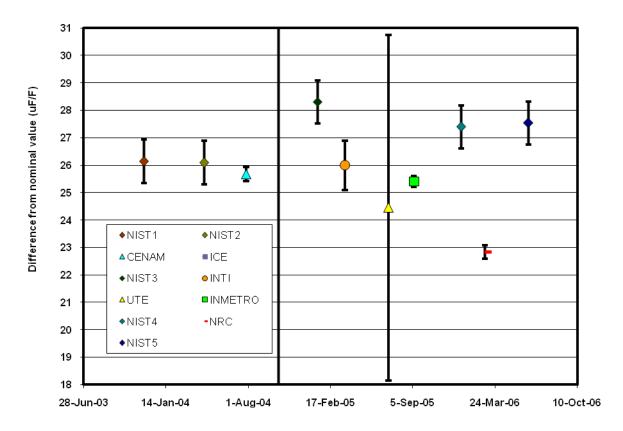


Fig. 16. Most participant results of measurement of GR 1404-A SN 2151 1000 pF at 1 kHz

6 References

- [1] N.F. Zhang, H.-K. Liu, N. Sedransk, and W.E. Strawderman, Statistical analysis of key comparisons with linear trends, Metrologia, 41, pp. 231-237, 2004.
- [2] A.-M. Jeffery, Final Report CCEM-K4 Comparison of 10 pF Capacitance Standards, March 2001.
- [3] N. F. Zhang, W. E. Strawderman, H. K. Liu, and N. Sedransk, Statistical analysis for multiple artifact problem in key comparisons with linear trends, Metrologia, 43, pp. 21-26, 2006.
- [4] W. Zhang, N. F. Zhang, and H. K. Liu, A generalized method for the multiple artifacts problem in interlaboratory comparisons with linear trends, Metrologia, 46, pp. 345-350, 2009.
- [5] N. F. Zhang, Linking the results of CIPM and RMO key comparisons with linear trends, Journal of Research of the National Institute of Standards and Technology, 115, pp. 179-194, 2010.

Appendix A. Analysis Procedure

It is well known that for a standard of capacitance, the measurements typically show a trend in time, which under our assumption can be modeled as a linear trend with time. As in [1] and [3], we assume that the measurements of any particular laboratory have a linear trend in time and the slopes of the linear trends for the laboratories are the same, while we allow different intercepts for different laboratories. In each of the SIM comparisons, only one traveling standard was used. In each comparison, the traveling standard was measured at the pilot laboratory – NIST – for five periods, while for each of the non-pilot laboratories it was measured for only one time period.

For each non-pilot laboratory, an uncertainty budget was reported and the combined standard uncertainty was calculated. For NIST, in each of the three 1000 Hz comparison points, i.e., for SIM.EM-K4 10 pF at 1000 Hz, SIM.EM.-S4 100 pF at 1000Hz, and SIM.EM-S3, the Type A uncertainties as well as the Type B uncertainties for each period are the same. However, for the two 1600 Hz comparison points, i.e., SIM.EM-K4 10 pF at 1600 Hz and SIM.EM-S4 100 pF at 1600 Hz, the Type A uncertainties as well as the Type B uncertainties for each period of NIST measurements are different. Thus, a general statistical analysis procedure proposed in [4] was used.

It should be noted that the time periods for measurement at each laboratory varied from one day to four or five weeks and the time periods for measurement at the pilot laboratory were sometimes much longer, from weeks to months.

Additionally, the laboratories performed measurements at varying ambient temperatures, with differences of greater than 1.5 °C between pilot and some other laboratories. For the SIM.EM-S3 traveling standard (GR 1404-A), the temperature coefficient of capacitance is $2 \pm 2 \mu F/F$ °C. Unfortunately, no temperature corrections were requested within the comparison protocol. Future comparisons should provide for either temperature enclosure for all standards or temperature correction of the results obtained under significantly differing environmental conditions.

Appendix B. Analysis Results

The results were calculated based on the statistical analysis in Appendix A and are listed below.

1. SIM.EM-K4 10 pF

a. 1 kHz results

The 1000 Hz capacitance drift of the traveling standard was determined from pilot laboratory measurements using a linear fit, cap = beta*(t-t_{init}) + alpha, where beta = 0.282, alpha = 1.767, and t_{init} = 2003.866. The key comparison reference value (KCRV) as a deviation from the nominal value of 10 pF, is 2.429 μ F/F, with a standard uncertainty of 0.058 μ F/F. The optimal time, t, for the CRV, is t = 2005.356. Statistics are computed according to reference [1].

The degree of equivalence of all laboratories with respect to the CRV for 1000 Hz is shown in Table 1 and the pair-wise degree of equivalence and their uncertainties are given in Table 2. Note that for Tables 1 and 2, the degree of equivalence and their uncertainties are given in μ F/F.

Table B1. 1000 Hz degree of equivalence of all laboratories with respect to the CRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
NIST	-0.155	0.100
CENAM	-0.155	0.162
ICE	-2002	1800000
INTI	0.346	0.396
UTE	-4.689	3.400
INMETRO	-0.148	0.192
NRC	0.120	0.056

Table B2. Pair-wise 1000 Hz degree of equivalence with uncertainties in parentheses.

	t an wise 100	·			_ 0, 0 _ 0 _ 0 0	nties in pare	minosos.
	NIST	CENAM	ICE	INTI	UTE	INMETRO	NRC
NIST		0.000214	2002	-0.501	4.535	-0.00643	-0.274
		(0.205)	(180000)	(0.416)	(3.40)	(0.231)	(0.141)
CENAM	-0.000214		2002	-0.5008	4.534	-0.00664	-0.274
	(0.205)		(180000)	(0.435)	(3.40)	(0.264)	(0.191)
ICE	-2002	-2002		-2003	-1998	-2002	-2002
	(180000)	(180000)		(180000)	(180000)	(180000)	(180000)
INTI	0.501	0.501	2003		5.035	0.494	0.226
	(0.416)	(0.435)	(180000)		(3.42)	(0.447)	(0.408)
UTE	-4.535	-4.534	1998	-5.035		-4.541	-4.809
	(3.40)	(3.40)	(180000)	(3.42)		(3.41)	(3.40)
INMETRO	0.00643	0.00664	2002	-0.494	4.541		-0.268
	(0.231)	(0.264)	(180000)	(0.447)	(3.41)		(0.215)
NRC	0.274	0.274	2002	-0.226	4.809	0.268	
	(0.141)	(0.191)	(180000)	(0.408)	(3.40)	(0.215)	

b. 1.6 kHz results

The 1600 Hz capacitance drift of the traveling standard was determined from pilot laboratory measurements using a linear fit, cap = beta*(t-t_{init}) + alpha, where beta = 0.303, alpha = 1.612, and t_{init} = 2003.852. The comparison reference value (CRV) as a deviation from the nominal value of 10 pF, is 2.194 μ F/F, with an uncertainty of 0.035 μ F/F. The optimal t = 2005.210.

The degree of equivalence of all laboratories with respect to the CRV for 1600 Hz is shown in Table 3 and the pair-wise degree of equivalence and their uncertainties are given in Table 4. Note that for Tables 3 and 4, the degree of equivalence is given in units of pF while the uncertainties are given in μ F/F.

Table B3. 1600 Hz degree of equivalence of all laboratories with respect to the CRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
NIST	-0.136	0.029
CENAM	-0.143	0.170
ICE	-2002	180000
INTI	-0.652	0.348
INMETRO	-0.109	0.198
NRC	0.401	0.070

Table B4. Pair-wise 1600 Hz degree of equivalence with uncertainties in parentheses.

	NIST	CENAM	ICE	INTI	INMETRO	NRC
NIST		0.00635	2002	0.515	-0.0273	-0.537
		(0.177)	(180000)	(0.353)	(0.207)	(0.096)
CENAM	-0.00635		2002	0.509	-0.0337	-0.543
	(0.177)		(180000)	(0.390)	(0.268)	(0.197)
ICE	-2002	-2002		-2001	-2002	-2002
	(180000)	(180000)		(180000)	(180000)	(180000)
INTI	-0.515	-0.509	2001		-0.543	-1.053
	(0.353)	(0.390)	(180000)		(0.404)	(0.359)
INMETRO	0.0273	0.0337	2002	0.543		-0.510
	(0.207)	(0.268)	(180000)	(0.404)		(0.212)
NRC	0.537	0.543	2002	1.053	0.510	
	(0.096)	(0.197)	(180000)	(0.359)	(0.212)	<u>/////</u>

2. SIM.EM-S4 100 pF

a. 1 kHz results

The 1000 Hz capacitance drift of the traveling standard was determined from pilot laboratory measurements using a linear fit, cap = beta*(t-t_{init}) + alpha, where beta = 0.162, alpha = 1.387, and t_{init} = 2003.866. The comparison reference value (CRV) as a deviation from the nominal value of 100 pF, is 1.590 μ F/F, with a standard uncertainty of 0.075 μ F/F. The optimal time, t, for the CRV, is t = 2005.267. Statistics are computed according to reference [1].

The degree of equivalence of all laboratories with respect to the CRV for 1000 Hz is shown in Table 5 and the pair-wise degree of equivalence and their uncertainties are given in Table 6. Note that for Tables 5 and 6, the degree of equivalence and their uncertainties are given in μ F/F.

Table B5. 1000 Hz degree of equivalence of all laboratories with respect to the CRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
NIST	0.016	0.069
CENAM	-0.508	0.175
ICE	-601.5	19000
INTI	0.128	0.494
UTE	-2.831	3.299
INMETRO	0.034	0.186
NRC	0.456	0.186

Table B6. Pair-wise 1000 Hz degree of equivalence with uncertainties in parentheses.

	NIST	CENAM	ICE	INTI	UTE	INMETRO	NRC
NIST		0.524	601.5	-0.112	2.847	-0.0172	-0.440
		(0.216)	(19000)	(0.510)	(3.30)	(0.225)	(0.225)
CENAM	-0.524		601.0	-0.635	2.323	-0.541	-0.964
	(0.216)		(19000)	(0.535)	(3.31)	(0.276)	(0.277)
ICE	-601.5	-601.0		-601.6	-598.7	-601.5	-602.0
	(19000)	(19000)		(19000)	(19000)	(19000)	(19000)
INTI	0.112	0.635	601.6		2.959	0.0943	-0.328
	(0.510)	(0.535)	(19000)		(3.34)	(0.539)	(0.539)
UTE	-2.847	-2.323	598.7	-2.959		-2.864	-3.287
	(3.30)	(3.305)	(19000)	(3.34)		(3.31)	(3.31)
INMETRO	0.0172	0.541	601.5	-0.0943	2.864		-0.423
	(0.225)	(0.276)	(19000)	(0.539)	(3.31)		(0.283)
NRC	0.440	0.964	602.0	0.328	3.287	0.423	
	(0.225)	(0.277)	(19000)	(0.539)	(3.31)	(0.283)	

b. 1.6 kHz results

The 1600 Hz capacitance drift of the traveling standard was determined from pilot laboratory measurements using a linear fit, cap = beta*(t-t_{init}) + alpha, where beta = 0.147, alpha = 1.372, and t_{init} = 2003.852. The comparison reference value (CRV) as a deviation from the nominal value of 100 pF, is 1.639 μ F/F, with an uncertainty of 0.037 μ F/F. The optimal t = 2005.135.

The degree of equivalence of all laboratories with respect to the CRV for 1000 Hz is shown in Table 7 and the pair-wise degree of equivalence and their uncertainties are given in Table 8. Note that for Tables 7 and 8 the degree of equivalence is given in units of pF while the uncertainties are given in μ F/F.

Table B7. 1600 Hz degree of equivalence of all laboratories with respect to the CRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
NIST	-0.074	0.018
CENAM	-0.165	0.019
ICE	-101.6	19000
INTI	-1.060	0.449
INMETRO	-0.058	0.198
NRC	0.674	0.111

Table B8. Pair-wise 1600 Hz degree of equivalence with uncertainties in parentheses.

						, •
	NIST	CENAM	ICE	INTI	INMETRO	NRC
NIST		0.0907	101.5	0.987	-0.0160	-0.748
		(0.196)	(19000)	(0.452)	(0.206)	(0.126)
CENAM	-0.0907		101.4	0.896	-0.107	-0.839
	(0.196)		(19000)	(0.489)	(0.280)	(0.230)
ICE	-101.5	-101.4		-100.5	-101.5	-102.3
	(19000)	(19000)		(19000)	(19000)	(19000)
INTI	-0.987	-0.896	100.5		-1.003	-1.735
	(0.452)	(0.489)	(19000)		(0.493)	(0.465)
INMETRO	0.0160	0.107	101.5	1.003		-0.732
	(0.206)	(0.280)	(19000)	(0.493)	<i>(//////</i>	(0.229)
NRC	0.748	0.839	102.3	1.735	0.732	
	(0.126)	(0.230)	(19000)	(0.465)	(0.229)	

3. SIM.EM-S3 1000 pF

a. 1 kHz results

The 1000 Hz capacitance drift of the traveling standard was determined from pilot laboratory measurements using a linear fit, cap = beta*(t-t_{init}) + alpha, where beta = 0.584, alpha = 26.369, and t_{init} = 2003.866. The comparison reference value (CRV) as a deviation from the nominal value of 1000 pF, is 24.997 μ F/F, with an uncertainty of 0.125 μ F/F. The optimal time, t, for the CRV, is t = 2005.467. Statistics are computed according to reference [1].

The degree of equivalence of all laboratories with respect to the CRV for 1000 Hz is shown in Table 9 and the pair-wise degree of equivalence and their uncertainties are given in Table 10. Note that for Tables 9 and 10, the degree of equivalence and their uncertainties are given in μ F/F.

Table B9. 1000 Hz degree of equivalence of all laboratories with respect to the CRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
NIST	2.292	0.412
CENAM	1.197	0.377
ICE	-244.6	1800
INTI	1.148	0.895
UTE	-0.570	6.299
INMETRO	0.285	0.174
NRC	-2.562	0.322

Table B10. Pair-wise 1000 Hz degree of equivalence with uncertainties in parentheses.

	NIST	CENAM	ICE	INTI	UTE	INMETRO	NRC
NIST		1.095	246.9	1.148	2.862	2.007	4.854
		(0.522)	(1800)	(0.992)	(6.32)	(0.498)	(0.599)
CENAM	-1.095		245.8	0.0532	1.767	0.9120	3.759
	(0.522)		(1800)	(0.961)	(6.31)	(0.501)	(0.651)
ICE	-246.9	-245.8		-245.7	-244.0	-244.9	-242.0
	(1800)	(1800)	<i>/////</i>	(1800)	(1800)	(1800)	(1800)
INTI	-1.148	-0.0532	245.7		1.714	0.8587	3.706
	(0.992)	(0.961)	(1800)		(6.36)	(0.936)	(0.988)
UTE	-2.862	-1.767	244.0	-1.714		-0.8548	1.992
	(6.32)	(6.31)	(1800)	(6.36)		(6.30)	(6.31)
INMETRO	-2.007	-0.912	244.9	-0.8587	0.8548		2.847
	(0.498)	(0.501)	(1800)	(0.936)	(6.30)		(0.359)
NRC	-4.854	-3.759	242.0	-3.706	-1.992	-2.847	
	(0.598)	(0.651)	(1800)	(0.988)	(6.31)	(0.359)	

Appendix C. Uncertainty Budgets for 10 pF

1. INTI

Table C1. INTI 10 pF 1000 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Reference capacitor uncertainty	0.4
Short-term stability	0.01
1:1 comparison uncertainty	0.03
Combined standard uncertainty	0.4

Table C2. INTI 10 pF 1600 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Reference capacitor uncertainty	0.35
Short-term stability	0.0082
1:1 comparison uncertainty	0.03
Combined standard uncertainty	0.35

2. INMETRO

Table C3. INMETRO 10 pF 1000 Hz Uncertainty Budget

	Table C3. INVIETNO TO PT 1000 TIZ Checitainty Budget					
Quantity	Standard	Sensitivity	Type			
	uncertainty	coefficient				
$C_{\rm N}^{~(1)}$	5.0E-07 pF	1	Type B			
Δα	3.72E-06	1.00E-02 pF	Type A			
Δβ	4.90E-07	1.80E-05 pF	Type A			
$\Delta \beta$ C	5E-08 pF	6.63E-05	Type B			
<i>C'</i>	0.0018 pF	2.60E-07	Type B			
ν	0.1	6.63E-07 pF	Type B			
$\epsilon_{ m R}$	1E-08 pF	1	Type B			
$C_{\rm X} C_{\rm N}^{(2)}$	8E-08 pF	1	Combined			
Error (3)	1.0E-07 pF	1	Type B			
$C_{\rm X}$ ⁽⁴⁾	5.2E-07 pF	1	Combined			
$R_{\text{K-90}}^{(5)}$	1.00E-06 pF	1	Type B			
Biannual Drift	1.00E-06 pF	1	Type A			
$C_{\rm X}^{(7)}$	0.0000020 pF		Combined			

Table C4. INMETRO 10 pF 1600 Hz Uncertainty Budget

Quantity	Standard uncertainty	Sensitivity coefficient	Туре
$C_{\mathrm{N}}^{(1)}$	4.0E-07 pF	1	Type B
Δα	3.16E-06	1.00E-02 pF	Type A
Δβ	7.48E-07	8.00E-06 pF	Type A
C	4E-08 pF	6.56E-05	Type B
<i>C'</i>	0.0008 pF	8.00E-07	Type B
ν	0.1	6.56E-07 pF	Type B
$\epsilon_{ m R}$	1E-08 pF	1	Type B
$C_{\rm X} C_{\rm N}^{(2)}$	7E-08 pF	1	Combined
Error (3)	1.50E-07 pF	1	Type B
$C_{\rm X}$ ⁽⁴⁾	4.3E-07 pF	1	Combined
$R_{\text{K-90}}^{(5)}$	1.00E-06 pF	1	Type B
Biannual Drift	1.00E-06 pF	1	Type A
$C_{\rm X}^{(7)}$	0.0000020 pF		Combined

3. NRC

Table C5. NRC 10 pF 1000 Hz Uncertainty Budget

Quantity	Туре	Uncertainty (µF/F)	Sensitivity coefficient	Sensitivity factor	Standard uncertainty (µF/F)	Degrees of freedom
Reference Standard	Combined	0.078	1	1	0.078	15.0
Test Standard	Type A	0.005	1	1	0.005	9.0
Voltage Dependence	Type B	0.000	1	1	0.000	4.9
Frequency Dependence	Type B	0.000	1	1	0.000	4.9
10:1 Ratio	Type B	0.000	1	1	0.000	4.9
Meter Nonlinearity	Type B	0.004	1	1	0.004	4.9
Other	Type B	0.005	0	1	0.000	4.9
Combined					0.079	15.2

Table C6. NRC 10 pF 1600 Hz Uncertainty Budget

Quantity	Туре	Uncertainty (µF/F)	Sensitivity coefficient	Sensitivity factor	Standard uncertainty (µF/F)	Degrees of freedom
Reference Standard	Combined	0.068	1	1	0.068	10.5
Test Standard	Type A	0.005	1	1	0.005	9.0
Voltage Dependence	Type B	0.000	1	1	0.000	4.9
Frequency Dependence	Type B	0.000	1	1	0.000	4.9
10:1 Ratio	Type B	0.000	1	1	0.000	4.9
Meter Nonlinearity	Type B	0.004	1	1	0.004	4.9
Other	Type B	0.005	0	1	0.000	4.9
Combined					0.069	10.6

4. ICE

Table C7. ICE 10 pF 1000 Hz Uncertainty Budget

Component	Uncertainty (µF/F)
Type B	90900
Type A	155000
Combined standard uncertainty	180000

Table C8. ICE 10 pF 1600 Hz Uncertainty Budget

Component	Uncertainty (µF/F)
Type B	90900
Type A	155000
Combined standard uncertainty	180000

5. CENAM

Table C9. CENAM 10 pF 1000 Hz Uncertainty Budget

Uncertainty Component	Estimate x _i	Relative Standard Uncertainty u(x _i) (µF/F)	Probability Distribution / Method of Evaluation (A,B)	Sensitivity Coefficient c _i	Uncertainty Contribution ui (c _X) (µF/F)	Degrees Freedom V _i	of
Reference Standard Value	10 pF + 23,0 aF	0.115	Normal	1	0,115	60	
Reference Standard Long Term Stability		0.085	Normal	1.5	0,128	60	
Test Standard		0.010	Normal	1	0,010	16	
Voltage Dependence		0.005	Normal	1	0,005	60	
Frequency Dependence							
Capacitance Bridge	-3,06 aF	0.011	Normal	1	0,011	60	
Cables Correction		0.001	Normal	1	0,001	60	
C_{X}	10 pF + 19.9 aF				0.17	120	

Table C10. CENAM 10 pF 1600 Hz Uncertainty Budget

Uncertainty Component	Estimate x _i	Relative Standard Uncertainty u(x _i) (µF/F)	Probability Distribution / Method of Evaluation (A,B)	Sensitivity Coefficient c _i	Uncertainty Contribution ui (c _X) (µF/F)	Degrees of Freedom V _i
Reference Standard Value	10 pF + 22,5 aF	0.115	Normal	1	0.115	60
Reference Standard Long Term Stability		0.085	Normal	1.5	0.128	60
Test Standard		0.010	Normal	1	0.010	16
Voltage Dependence		0.005	Normal	1	0.005	60
Frequency Dependence						
Capacitance Bridge	-3,06 aF	0.011	Normal	1	0.011	60
Cables Correction		0.001	Normal	1	0.001	60
C_X	10 pF + 19.9 aF				0.17	120

6. NIST

Table C11. NIST AH Bridge 10 pF 1000 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Reference Standard	Type B	0.050
Reference Drift	Type B	0.030
Test Drift	Type B	0.030
Bridge Thermal	Type B	0.050
Bridge Mechanical	Type B	0.050
Bridge Linearity	Type B	0.050
Bridge Loading	Type B	0.000
Test Variation	Type A	0.030
Combined		0.123

Table C12. NIST AH Bridge 10 pF 1600 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Reference Standard	Type B	0.020
Reference Drift	Type B	0.030
Test Drift	Type B	0.030
Bridge Thermal	Type B	0.050
Bridge Mechanical	Type B	0.050
Bridge Linearity	Type B	0.050
Bridge Loading	Type B	0.010
Test Variation	Type A	0.030
Combined		0.114

Table C13. NIST 2-Pair Bridge 10 pF 1592 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Calculable Capacitor	Type B	0.019
Transformer Bridge	Type B	0.005
10 pF Correction Calculation	Type B	0.002
Test Variation	Type A	0.002
Combined		0.020

7. UTE

Table C14. UTE 10 pF 1000 Hz Uncertainty Budget

Uncertainty Component	Standard Uncertainty u(x _i)		Probability Distribution	Sensitivity coefficient c _i		Uncertal contribution k=1	
Capacitance dispersion	1.68E-6	pF	6	1		1.7E-6	pF
Test current (I)	3.05E-11	Α	Rectangular	-5,71E-11	F/A	-1.7E-9	pF
Reference standard (C ₂)	3.32E-4	pF	Normal	1,00E-1	F/F	3.3E-5	pF
Detector current angle (α)	5.03E-2	rad	Rectangular	-1,13E-16	F	-5.7E-6	pF
Detector current amplitude (I _d)	4.62E-14	Α	Rectangular	4,88E-06	F/A	2.3E-7	pF
IVD deviation (ε)	5.00E-07	V/V	Normal	1,10E-11	F	5.5E-6	pF
Combined			-		-	3.4E-5	рF

Appendix D. Uncertainty Budgets for 100 pF

1. INTI

Table D1. INTI 100 pF 1000 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Reference capacitor uncertainty	0.5
Short-term stability	0.012
1:1 comparison uncertainty	0.03
Combined standard uncertainty	0.5

Table D2. INTI 100 pF 1600 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Reference capacitor uncertainty	0.45
Short-term stability	0.015
1:1 comparison uncertainty	0.03
Combined standard uncertainty	0.45

2. INMETRO

Table D3. INMETRO 100 pF 1000 Hz Uncertainty Budget

Quantity	Standard	Sensitivity	Type
	uncertainty	coefficient	
$C_{\mathrm{N}}^{(1)}$	5.0E-06 pF	1	Type B
Δα	2.24E-05	1.00E-02 pF	Type A
Δβ	2.56E-06	1.80E-05 pF	Type A
C	5E-08 pF	6.15E-04	Type B
<i>C'</i>	0.0018 pF	5.80E-06	Type B
ν	0.1	6.15E-06 pF	Type B
$\epsilon_{ m R}$	1E-08 pF	1	Type B
$C_{\rm X} C_{\rm N}^{(2)}$	7E-07 pF	1	Combined
Error (3)	1.0E-06 pF	1	Type B
$C_{\rm X}$ ⁽⁴⁾	5.1E-06 pF	1	Combined
$R_{\text{K-90}}^{(5)}$	1.00E-05 pF	1	Type B
Biannual Drift	1.00E-05 pF	1	Type A
	0.000020 pF		Combined

Table D4. INMETRO 100 pF 1600 Hz Uncertainty Budget

Quantity	Standard	Sensitivity	Type
	uncertainty	coefficient	
$C_{\rm N}^{(1)}$	4.0E-06 pF	1	Type B
Δα	2.24E-05	1.00E-02 pF	Type A
Δβ	4.54E-06	8.00E-06 pF	Type A
C	4E-08 pF	6.14E-04	Type B
<i>C'</i>	0.0008 pF	8.94E-06	Type B
ν	0.1	6.14E-06 pF	Type B
$\epsilon_{ m R}$	1E-08 pF	1	Type B
$C_{\rm X} C_{\rm N}^{(2)}$	7E-07 pF	1	Combined
Error (3)	1.50E-06 pF	1	Type B
$C_{\rm X}$ ⁽⁴⁾	4.3E-06 pF	1	Combined
$R_{\text{K-90}}^{(5)}$	1.00E-05 pF	1	Type B
Biannual Drift	1.00E-05 pF	1	Type A
(6)			
$C_{\rm X}^{(7)}$	0.000020 pF		Combined

3. NRC

Table D5. NRC 100 pF 1000 Hz Uncertainty Budget

Quantity	Туре	Uncertainty (µF/F)	Sensitivity coefficient	Sensitivity factor	Standard uncertainty	Degrees of freedom
Reference Standard	Combined	0.100	1	1	(μ F/F) 0.100	14.2
Test Standard	Type A	0.002	1	1	0.002	9.0
Voltage Dependence	Type B	0.000	1	1	0.000	4.9
Frequency Dependence	Type B	0.000	1	1	0.000	4.9
10:1 Ratio	Type B	0.000	1	1	0.000	4.9
Meter Nonlinearity	Type B	0.040	1	1	0.040	4.9
Other	Type B	0.004	0	1	0.000	4.9
Combined					0.11	17.8

Table D6. NRC 100 pF 1600 Hz Uncertainty Budget

Quantity	Type	Uncertainty (µF/F)	Sensitivity coefficient	Sensitivity factor	Standard uncertainty (µF/F)	Degrees of freedom
Reference Standard	Combined	0.100	1	1	0.100	14.2
Test Standard	Type A	0.002	1	1	0.002	9.0
Voltage Dependence	Type B	0.000	1	1	0.000	4.9
Frequency Dependence	Type B	0.000	1	1	0.000	4.9
10:1 Ratio	Type B	0.000	1	1	0.000	4.9
Meter Nonlinearity	Type B	0.040	1	1	0.040	4.9
Other	Type B	0.018	0	1	0.000	4.9
Combined					0.11	17.8

4. ICE

Table D7. ICE 100 pF 1000 Hz Uncertainty Budget

Component	Uncertainty (µF/F)
Type B	9090
Type A	16600
Combined standard uncertainty	19000

Table D8. ICE 100 pF 1600 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Type B	9090
Type A	16600
Combined standard uncertainty	19000

5. CENAM

Table D9. CENAM 100 pF 1000 Hz Uncertainty Budget

Uncertainty Component	Relative Standard Uncertainty u(x _i) (µF/F)	Probability Distribution / Method of Evaluation (A,B)	Sensitivity Coefficient c _i	Uncertainty Contribution ui (c _X) (µF/F)	Degrees Freedom V _i	of
Reference Standard Value	0,115	Normal	10	0,115	60	
Reference Standard Long Term Stability	0,0085	Normal	15	0,128	60	
Test Standard	0,007	Normal	1	0,007	16	
Voltage Dependence	0,0005	Normal	10	0,005	60	
Frequency Dependence						
Capacitance Bridge	0,079	Normal	1	0,079	60	
Cables Correction	0,001	Normal	1	0,001	60	
				0.19	160	

Table D10. CENAM 100 pF 1600 Hz Uncertainty Budget

Uncertainty Component	Relative Standard Uncertainty u(x _i) (μF/F)	Probability Distribution / Method of Evaluation (A,B)	Sensitivity Coefficient c _i	Uncertainty Contribution ui (c _X) (µF/F)	Degrees of Freedom	of
Reference Standard Value	0,0115	Normal	10	0,115	60	
Reference Standard Long Term Stability	0,0085	Normal	15	0,128	60	
Test Standard	0,005	Normal	1	0,005	16	
Voltage Dependence	0,0005	Normal	10	0,005	60	
Frequency Dependence	0.0001	Normal	10	0.001	60	
Capacitance Bridge	0,073	Normal	1	0,073	60	
Cables Correction	0,001	Normal	1	0,001	60	
				0.19	156	

6. NIST

Table D11. NIST AH Bridge 100 pF 1000 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Reference Standard	Type B	0.050
Reference Drift	Type B	0.030
Test Drift	Type B	0.030
Bridge Thermal	Type B	0.050
Bridge Mechanical	Type B	0.050
Bridge Linearity	Type B	0.030
Bridge Loading	Type B	0.004
Test Variation	Type A	0.030
Combined		0.105

Table D12. NIST AH Bridge 100 pF 1600 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Reference Standard	Type B	0.020
Reference Drift	Type B	0.030
Test Drift	Type B	0.030
Bridge Thermal	Type B	0.050
Bridge Mechanical	Type B	0.050
Bridge Linearity	Type B	0.030
Bridge Loading	Type B	0.010
Test Variation	Type A	0.030
Combined		0.095

Table D13. NIST 2-Pair Bridge 100 pF 1592 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Calculable Capacitor	Type B	0.019
Transformer Bridge	Type B	0.005
10 pF Correction Calculation	Type B	0.002
10:1 Ratio	Type B	0.005
Test Variation	Type A	0.002
Combined		0.020

. UTE

Table D14. UTE 10 pF 1000 Hz Uncertainty Budget

		, ,						
Uncertainty Component	Standard		Probability	Sensitivi	Sensitivity		Uncertainty	
	Uncertainty	$u(x_i)$	Distribution	coefficient ci		contribution u _i (y)		
						k=1		
Capacitance dispersion	1.68E-6	pF	6	1		1.7E-6	pF	
Test current (I)	3.05E-11	Α	Rectangular	-5,71E-11	F/A	-1.7E-9	pF	
Reference standard (C ₂)	3.32E-4	pF	Normal	1,00E-1	F/F	3.3E-5	pF	
Detector current angle (α)	5.03E-2	rad	Rectangular	-1,13E-16	F	-5.7E-6	pF	
Detector current	4.62E-14	Α	Rectangular	4,88E-06	F/A	2.3E-7	pF	
amplitude (I _d)								
IVD deviation (ε)	5.00E-07 V/V		Normal	1,10E-11	F	5.5E-6	pF	
Combined						3.4E-5	рF	

Appendix E. Uncertainty Budgets for 1000 pF

1. INTI

Table E1. INTI 100 pF 1000 Hz Uncertainty Budget

Component	Uncertainty (μF/F)
Reference capacitor uncertainty	0.5
Short-term stability	0.06
10:1 comparison uncertainty	0.7
Combined standard uncertainty	0.9

2. INMETRO

Table E2. INMETRO 100 pF 1000 Hz Uncertainty Budget

Quantity	Standard	Sensitivity	Type
	uncertainty	coefficient	
$C_{\rm N}^{(1)}$	5.0E-06 pF	1	Type B
Δα	2.24E-05	1.00E-02 pF	Type A
Δβ	2.56E-06	1.80E-05 pF	Type A
C	5E-08 pF	6.15E-04	Type B
C'	0.0018 pF	5.80E-06	Type B
ν	0.1	6.15E-06 pF	Type B
$\epsilon_{ m R}$	1E-08 pF	1	Type B
$C_{\rm X} C_{\rm N}^{(2)}$	7E-07 pF	1	Combined
Error (3)	1.0E-06 pF	1	Type B
$C_{\mathrm{X}}^{(4)}$	5.1E-06 pF	1	Combined
$R_{\text{K-90}}^{(5)}$	1.00E-05 pF	1	Type B
Biannual Drift	1.00E-05 pF	1	Type A
	0.000020 pF		Combined

3. NRC

Table E3. NRC 100 pF 1000 Hz Uncertainty Budget

Quantity	Туре	Uncertainty (µF/F)	Sensitivity coefficient	Sensitivity factor	Standard uncertainty (µF/F)	Degrees of freedom
Reference Standard	Combined	0.100	1	1	0.130	22.5
Test Standard	Type A	0.002	1	1	0.003	9.0
Voltage Dependence	Type B	0.000	1	1	0.000	4.9
Frequency Dependence	Type B	0.000	1	1	0.000	4.9
10:1 Ratio	Type B	0.000	1	1	0.000	4.9
Meter Nonlinearity	Type B	0.040	1	1	0.010	4.9
Loading & cable corrections	Type B	0.004	0	1	0.000	4.9
Combined					0.13	22.8

4. ICE

Table E4. ICE 100 pF 1000 Hz Uncertainty Budget

Twell 2 is 100 pr 1000 till entertunner 2 inger					
Component	Uncertainty (μF/F)				
Type B	909				
Type A	1550				
Combined standard uncertainty	1800				

5. CENAM

Table E5. CENAM 100 pF 1000 Hz Uncertainty Budget

Uncertainty Component	Relative Standard Uncertainty u(x _i) (µF/F)	Probability Distribution / Method of Evaluation (A,B)	Sensitivity Coefficient c _i	Uncertainty Contribution ui (c _X) (µF/F)	Degrees Freedom V _i	of
Reference Standard Value	0,115	Normal	10	0,115	60	
Reference Standard Long Term Stability	0,0085	Normal	15	0,128	60	
Test Standard	0,007	Normal	1	0,007	16	
Voltage Dependence	0,0005	Normal	10	0,005	60	
Frequency Dependence						
Capacitance Bridge	0,079	Normal	1	0,079	60	
Cables Correction	0,001	Normal	1	0,001	60	
				0.19	160	

6. NIST

Table E6. NIST AH Bridge 100 pF 1000 Hz Uncertainty Budget

Quantity	Type	Standard uncertainty (µF/F)
Reference Standard	Type B	0.050
Reference Drift	Type B	0.030
Test Drift	Type B	0.030
Bridge Thermal	Type B	0.050
Bridge Mechanical	Type B	0.050
Bridge Linearity	Type B	0.030
Bridge Loading	Type B	0.004
Test Variation	Type A	0.030
Combined		0.105

. UTE

Table E7. UTE 10 pF 1000 Hz Uncertainty Budget

Uncertainty Component	Standard Uncertainty u(x _i)		Probability Distribution	Sensitivity coefficient c _i		Uncertainty contribution u _i (y	
Capacitance dispersion	1.68E-6	pF	6	1		1.7E-6	pF
Test current (I)	3.05E-11	Α	Rectangular	-5,71E-11	F/A	-1.7E-9	pF
Reference standard (C ₂)	3.32E-4	pF	Normal	1,00E-1	F/F	3.3E-5	pF
Detector current angle (α)	5.03E-2	rad	Rectangular	-1,13E-16	F	-5.7E-6	pF
Detector current	4.62E-14	Α	Rectangular	4,88E-06	F/A	2.3E-7	pF
amplitude (I _d)							
IVD deviation (ϵ)	5.00E-07 V/V		Normal	1,10E-11	F	5.5E-6	pF
Combined						3.4E-5	рF

Appendix F. CCEM-K4 10 pF Capacitance Linkage Analysis and Results

Data for Tables F1, and F2 are taken from [2], the CCEM-K4 Final Report of March 2001, Tables 5 and 6, respectively. The CCEM-K4 comparison evaluated a 10 pF capacitance standard at 1.592 kHz. Herein we presume equivalence between 1.592 kHz and 1.6 kHz. For the CCEM-K4 and SIM.EM-K4 Comparisons, there are two linking laboratories: NIST and NRC.

Table F1. 10 pF 1600 Hz degree of equivalence relative to the CCEM-K4 KCRV, with corresponding standard uncertainties (μF/F).

	esponente sumeriu	/ .
Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
BIPM	-0.018	0.050
BNM-LCIE	-0.216	0.043
CSIRO-NML	0.035	0.039
MSL	-0.026	0.064
NIM	-0.04	0.132
NIST (pilot)	-0.003	0.022
NMi	-0.772	0.600
NPL	0.198	0.056
NRC	0.037	0.161
PTB	-0.004	0.049
VNIIM	-0.318	0.201

Table F2. 10 pF 1600 Hz pairwise degrees of equivalence for CCEM-K4 (above diagonal) and corresponding uncertainties (below diagonal), all in µF/F.

		BNM-	CSIRO-		1202 (00		8,				
	BIPM	LCIE	NML	MSL	NIM	NIST	NMi	NPL	NRC	PTB	VNIIM
BIPM		0.20	-0.05	0.01	0.02	-0.02	0.75	-0.22	-0.06	-0.01	0.30
BNM-	0.13		-0.25	-0.19	-0.18	-0.21	0.56	-0.41	-0.25	-0.21	0.10
LCIE											
CSIRO-	0.13	0.12		0.06	0.08	0.04	0.81	-0.16	0.00	0.04	0.35
NML											
MSL	0.16	0.15	0.15		0.01	-0.02	0.74	-0.22	-0.06	-0.02	0.29
NIM	0.28	0.28	0.27	0.29		-0.04	0.73	-0.24	-0.08	-0.04	0.28
NIST	0.11	0.10	0.09	0.13	0.27		0.77	-0.20	-0.04	0.00	0.32
NMi	1.20	1.20	1.20	1.21	1.23	1.20		-0.97	-0.81	-0.77	-0.45
NPL	0.15	0.14	0.14	0.17	0.29	0.12	1.21		0.16	0.20	0.52
NRC	0.34	0.33	0.33	0.35	0.42	0.33	1.24	0.34		0.04	0.36
PTB	0.15	0.14	0.13	0.17	0.28	0.12	1.20	0.16	0.34		0.31
VNIIM	0.41	0.41	0.41	0.42	0.48	0.40	1.27	0.42	0.52	0.42	

Linkage Analysis Results

The results of statistically linking the SIM.EM-K4 10 pF Comparison at 1600 Hz to the CCEM-K4 10 pF Comparison were calculated based on the statistical analysis in reference [5] and are listed below.

Of the six NMIs which participated in the SIM.EM-K4 10 pF 1600 Hz Comparison, two participated in the CCEM-K4 Comparison (NIST and NRC) and four did not participate (CENAM, ICE, INTI, and INMETRO).

Table F3 lists the degree of equivalence of the four non-participating laboratories with respect to the CCEM-K4 key comparison reference value (KCRV) for CCEM-K4. Tables F4 and F5 provide the pair-wise degree of equivalence and uncertainty, respectively. The degrees of equivalence and their uncertainties are given in μ F/F.

Table F3. 1600 Hz degree of equivalence relative to the CCEM-K4 KCRV.

Laboratory	Degree of Equivalence	Uncertainty of Degree of
		Equivalence
CENAM	-0.030	0.101
ICE	-2002	180000
INTI	-0.539	0.319
INMETRO	0.004	0.139

Table F4. Pair-wise 10 pF 1600 Hz degree of equivalence.

	CENAM	ICE	INTI	INMETRO
BIPM	0.012	2002	0.521	-0.022
BNM-LCIE	-0.186	2002	0.323	-0.219
CSIRO-NML	0.065	2002	0.574	0.031
MSL	0.004	2002	0.513	-0.030
NIM	-0.010	2002	0.499	-0.044
NMi	-0.742	2001	-0.233	-0.776
NPL	0.228	2002	0.737	0.194
PTB	0.026	2002	0.535	-0.008
VNIIM	-0.288	2002	0.221	-0.322

Table F5. Pair-wise 10 pF 1600 Hz uncertainties.

	CENAM	ICE	INTI	INMETRO
BIPM	0.112	180000	0.323	0.147
BNM-LCIE	0.109	180000	0.322	0.145
CSIRO-NML	0.108	180000	0.322	0.144
MSL	0.119	180000	0.326	0.153
NIM	0.166	180000	0.345	0.191
NMi	0.608	180000	0.680	0.616
NPL	0.115	180000	0.324	0.150
PTB	0.112	180000	0.323	0.147
VNIIM	0.225	180000	0.377	0.244

Appendix G. Corrective Actions and Results

Several participant laboratories provided post-comparison corrections to their comparison results. The corrections could not be included in the comparison results but are shown below.

CENAM

CENAM reported after the submission of their results that they had made a slight error in the computation of the 1 kHz results for the 100 pF and 1000 pF standards. These measurements required a 10:1 ratio factor with which an incorrect sign was used. The corrected results are given in Table G1.

Nominal Capacitance Uncertainty Frequency Date Value (pF) (Hz)**(pF)** $(\mu F/F)$ 100.000140 0.38 2004.571 100 1000 1000 2004.571 1000 1000.02655 0.5

Table G1. CENAM Corrective Results

ICE

The ICE results were corrected based upon an improved calibration, performed by INMETRO in 2006, of the reference standards used by ICE in the comparison. The corrected results are shown in Table G1.

Uncertainty Nominal Frequency **Capacitance Date** Value (pF) (Hz)**(pF)** $(\mu F/F)$ 2004.787 10 1000 9.9958 44.2 2004.787 10 1600 9.9957 75.3 2004.787 100 1000 99.9832 6.3 2004.787 100 1600 99.9890 57.8 2004.787 1000 1000 999.954 4.3

Table G1. ICE Corrective Results

INTI

The INTI results were corrected using an improved calibration from BIPM in 2008 of the reference standards used in the comparison. The corrected INTI results are shown in Table G2.

Table G2. INTI Corrective Results

Date	Nominal Value (pF)	Frequency (Hz)	Capacitance (pF)	Uncertainty (µF/F)
2005.219	10	1000	10.0000223	0.40
2005.219	10	1600	10.0000207	0.35
2005.222	100	1000	100.000143	0.50
2005.222	100	1600	100.000136	0.45
2005.227	1000	1000	1000.0257	0.9

NRC

The NRC results were corrected based upon an improved analysis using data from previous calibrations from other NMIs as well as from the CCEM-K4 report. The corrected data are shown in Table G3.

Table G3. NRC Corrective Results

Date	Nominal Value (pF)	Frequency (Hz)	Capacitance (pF)	Uncertainty (µF/F)
2005.219	10	1000	10.00002766	0.15
2005.219	10	1600	10.00002376	0.14
2006.159	100	1000	100.000231	0.2
2006.159	100	1600	100.0001922	0.2
2006.159	1000	1000	1000.02262	0.25

Appendix H. List of Participants

Table H1. List of Participants

Organization	Country	Contact Person	E-mail	Shipping Address
NIST	United States	Andrew Koffman	andrew.koffman@nist.gov	NIST, 100 Bureau Drive, MS 8171, Gaithersburg, Maryland, 20899- 8171 USA
NRC	Canada	Dave Inglis	Dave.Inglis@nrc- cnrc.gc.ca	National Research Council of Canada M-36, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
CENAM	Mexico	Jose A Moreno	jmoreno@cenam.mx	CENAM, Queretaro, Mexico
ICE	Costa Rica	Harold Sanchez	hsanchez@ice.co.cr	Laboratorio Metrologico, ICE - San Pedro, San Jose, Costa Rica
INTI	Argentina	Marcelo Cazabat	cazamar@inti.gov.ar	Instituto Nacional de Tecnología Industrial (INTI), Centro de Investigación y Desarrollo en Física (CEFIS), Div. Electricidad, Av. Gral. Paz y Albarellos CP 1650. San Martín. Pcia. Bs. As. Argentina
UTE	Uruguay	Sergio Teliz	STeliz@ute.com.uy	UTE, Montevideo, Uruguay
INMETRO	Brazil	Luiz Macoto Ogino	Imogino@inmetro.gov.br	Laboratorio de Capactancia e Indutancia – Diele/Dimci/Incetro, Av. Nossa Senhora das Gracas 50, Xerem, Duque de Caxias, RJ, Brazil, CEP:25 250-02

Appendix I. Photographs of included parts

Figure I1. Front view of AH1100 Enclosure

Figure I2. Rear view of AH1100 Enclosure with fuse removed

Figure I3. AH1100/11A Operation and Maintenance Manual

Figure I4. GR1404-A Capacitance Standard in foam carton

Figure I5. 0.25 A fuses and 0.5 A fuses

Figure I7. BNC elbow and T-connectors

Figure I9. BNC barrel adapters

Figure I11. Two-terminal-pair twisted BNC cable

Figure I6. Shorting cable

Figure I8. BNC-to-GR874 connectors

Figure I10. BNC-to-alligator clips

Figure I12. Four-terminal-pair BNC cable