Development and validation of a least squares algorithm for static and dynamic synchrophasor tests

Luciano Domínguez Pose
Instituto Nacional de Tecnología Industrial (INTI) lucianod@inti.gob.ar

Abstract

INTI had developed a least squares fit algorithm based on an iterative matrix resolution method, covering all tests of the IEEE C37.118.1 standard. We present the method, results, validation and conclusions of this work.

Keywords: Synchrophasor-PMU-Calibration-Algorithm -Least square.

1. INTRODUCTION

TNTI is part of a public private consortium ${ }^{1}$ L which aim is to develop a measuring system to monitor the electrical grid, based on synchrophasors technology. A work packaged in this project includes the development of a reference system for PMU calibration. In this work we present an algorithm developed with that purpose, both for static and dynamic tests based on [1,2,3,4]

In Fig. 1 we can appreciate the block diagram of INTI PMU calibration system. A 120 V and 5 A signal is applied to the Device under test (DUT) and to the digitalization stage (DAQ) via current and voltage transducers. The digitalized output signals from the DAQ are fitting using an algorithm based on the least square method (LS) for obtain the reference synchrophasors, and thus be able to compare them with those produced by the PMU under test

2. LS FITTING ALGORITHM

The signal injected by the reference signal source can be modeled as
$V(\bar{t})=V_{0}(\bar{t}) \cdot \operatorname{sen}\left(2 \pi \bar{t} \cdot f(\bar{t})+\varphi_{0}\right)+B$
where $V_{0}(\bar{t})$ is the amplitude of the signal, $f(\bar{t})$ is the frequency of the system, φ_{0} is the phase angle
and B is the DC component. The \bar{t} vector represents the time of each sample.

The polynomial used by the fiting algorithm to estimate the reference signal can be seen in eq. (2) and eq. (3). Amplitude, frequency, phase and DC component are estimated using polynomials for each of them ranging from degree zero to degree two.

$$
\begin{align*}
& V_{0}(\bar{t})=V_{0}+V_{1} \cdot \bar{t}+V_{2} \cdot \bar{t}^{2} \tag{2}\\
& f(\bar{t})=f_{0}+f_{1} \cdot \bar{t} \tag{3}
\end{align*}
$$

The algorithm estimates $V_{0}, V_{1}, V_{2}, f_{0}, f_{1}, \varphi_{0}, B$.

Figure 1. Scheme of INTI PMU calibration system.
We use expansion in Taylor series over $V(\bar{t})$ in function of frequency $f(\bar{t})$. To estimate the digitalized signal in the sample vector \bar{v}, we use:

[^0]\[

$$
\begin{equation*}
\bar{v} \cong H\left(\bar{t}, \bar{f}^{\prime}\right) \cdot S C^{t} \tag{4}
\end{equation*}
$$

\]

where \bar{f}^{\prime} are the seed values of $f(\bar{t})$,

$$
\begin{align*}
& H\left(\bar{t}, \bar{f}^{\prime}\right)= \\
& =\left[\begin{array}{llll}
X\left(\bar{t}, \bar{f}^{\prime}\right) & Y\left(\bar{t}, \bar{f}^{\prime}\right) & \bar{t} \cdot X\left(\bar{t}, \bar{f}^{\prime}\right) & \bar{t} . Y\left(\bar{t}, \bar{f}^{\prime}\right) \\
\bar{t}^{2} \cdot X\left(\bar{t}, \bar{f}^{\prime}\right) & \bar{t}^{2} \cdot Y\left(\bar{t}, \bar{f}^{\prime}\right) & 1
\end{array}\right]
\end{align*}
$$

where
$X\left(\bar{t}, \bar{f}^{\prime}\right)=\operatorname{sen}\left(2 \pi \bar{t}\left(f_{0}{ }^{\prime}+f_{1}{ }^{\prime} \bar{t}\right)\right)$
$Y\left(\bar{t}, \bar{f}^{\prime}\right)=\cos \left(2 \pi \bar{t}\left(f_{0}{ }^{\prime}+f_{1}{ }^{\prime} \bar{t}\right)\right)$
and $S C$ is the fit coefficients vector
$S C=\left[\begin{array}{lllllll}S_{0} & C_{0} & S_{1} & C_{1} & S_{2} & C_{2} & C_{3}\end{array}\right]$
that minimizes the cuadratic vector error,

$$
\begin{equation*}
\left\|\bar{v}-H\left(\bar{t}, \bar{f}^{\prime}\right) \cdot S C^{t}\right\|_{2}^{2} \tag{9}
\end{equation*}
$$

and we obtain the solution through the following equation:
$S C\left(\bar{t}, \bar{f}^{\prime}\right)=\left[H^{t}\left(\bar{t}, \bar{f}^{\prime}\right) \cdot H\left(\bar{t}, \bar{f}^{\prime}\right)\right]^{-1} \cdot H^{t}\left(\bar{t}, \bar{f}^{\prime}\right) \cdot \bar{v}$
To solve (10) we use an iterative method, starting with an approximate initial value of $f_{0}{ }^{\prime}$ y $f_{1}{ }^{\prime}$.
Then,
$\Delta f_{0}=\left(S_{0} C_{1}-C_{0} S_{1}\right) /\left(2 \pi V_{0}^{2}\right)$
$\Delta f_{1}=\left(S_{0} C_{2}-C_{0} S_{2}\right) /\left(2 \pi V_{0}^{2}\right)$
$f_{0} \cong f_{0}^{\prime}+\Delta f_{0}$
$f_{1} \cong f_{1}^{\prime}+\Delta f_{1}$
Once we obtain f_{0} y f_{1}, we directly calculate
$V_{0}=\sqrt{S_{0}{ }^{2}+C_{0}{ }^{2}}$
$V_{i}=\left(C_{0} C_{i}-S_{0} S_{i}\right) / V_{0}$
$\varphi_{0}=\operatorname{arctg}\left(\frac{C_{0}}{s_{0}}\right)$
$B=C_{3}$

3. COVERED TESTS

Figure 2. Frequency ramp TVE results.

4.2 AMPLITUDE AND PHASE MODULATION

The test consists of the application of a modulation signal to the system that can be model as,
$X=X_{m}\left[1+K_{x} \cos (\omega t)\right] \cdot \cos \left[\omega_{0} t+\right.$
$\left.K_{a} \cos (\omega t-\pi)\right]$
where X_{m} is the amplitude of the signal, ω_{0} is the nominal frequency of the system, ω is the modulation frequency, K_{x} is the amplitude modulation factor and K_{a} is the phase modulation factor.

4.2.1 AMPLITUDE MODULATION

For amplitude modulation test we used the following configuration: $\omega=0.1$ to 4.9 Hz with gaps of $0.2 \mathrm{~Hz} . K_{x}=0.1, K_{a}=0$, sampling frequency $f_{s}=18 \mathrm{kHz}$ and $\omega_{0}=50 \mathrm{~Hz}$.
In table 2 and figures 3 and 4 we can see the results for TVE, FE y RFE.

	DYNAMIC AMPLITUDE MODULATION TEST				
	\max	mean	\min	max C37.118	passed
TVE $(\%)$	0,075	0,033	0,001	3	\checkmark
FE (Hz)	0,015	0,006	0,0001	0,06	\checkmark
RFE $(\mathrm{Hz} / \mathrm{s})$	0,33	0,19	0,002	3	\checkmark

Table 2. Results of comparison between METAS and INTI for amplitude modulation tests.

Figure 3. Amplitude modulation TVE results.

Figure 4. Amplitude modulation FE results.

4.2.2 PHASE MODULATION

For phase modulation a signals with the following configuration was applied: $\omega=0.1$ to 4.9 Hz with steps of $0.2 \mathrm{~Hz} . K_{a}=0.1, K_{x}=0$
In table 3 we can see the results for TVE, FE y RFE.

	DYNAMIC PHASE MODULATION TEST				
	\max	mean	\min	max C37.118	passed
TVE $(\%)$	0,073	0,057	0,043	3	\checkmark
FE (Hz)	0,05	0,03	0,0001	0,06	\checkmark
RFE $(\mathrm{Hz} / \mathrm{s})$	2,61	1,63	0,02	3	\checkmark

Table 3. Results of comparison between METAS and INTI for phase modulation tests.

4.3 PHASE STEP

The mathematical representation of the applied signal is:
$X=X_{m}\left[1+K_{x} f_{1}(t)\right] \cdot \cos \left[\omega_{0} t+K_{a} f_{1}(t)\right]$
where X_{m} is the amplitude of the signal, ω_{0} is the nominal frequency of the system, $f_{1}(t)$ is a unit step function, K_{x} is the magnitude step size and K_{a} the phase step size. The sampling frequency $f_{s}=18 \mathrm{kHz}$.

The results presented below have been performed under the following conditions: number of tests: 180. Phase increase per test: $\frac{\pi}{90} \frac{\mathrm{rad}}{\text { step. }} . K_{x}=1, K_{a}=$ $\frac{\pi}{90} \frac{\mathrm{rad}}{\mathrm{step}}$. Synchrophasor report rate: $50 \frac{\text { frames }}{\mathrm{s}}$. Step instant: 0.5 s

	DYNAMIC PHASE STEP TEST		
	\max	max C37.118	passed
Response time (s)	0,038	0,199	\checkmark
Delay time (s)	0,0023	0,005	\checkmark
Overshoot (\%)	1,8	5	\checkmark

Table 4. Results of comparison between METAS and INTI for Phase step tests.

Figure 5. INTI estimation algorithm phase step fitting.

a)

b)

Figure 6. Phase step results referred to: a) Response time. b) Delay.

5. CONCLUSIONS

Iterative matrix adjustment algorithms have been developed, using the Taylor series expansion method. The algorithms have been validated and the obtaining results in all tests were below the required limits by the synchrophasor standard IEEE C37.118.1. We can concluded that the algorithm developed at INTI can be used in the PMU reference system
We are currently working on the development of algorithms based on other methods to compare and optimize each tests.

ACKNOWLEDGMENTS

We are grateful to J. P. Braun and S. Siegenthaler of METAS, for the valuable help provided and the shared data for the validation of the algorithms.

REFERENCES

[1] G. Stenbakken, M. Zhou, "Dynamic Phasor Measurement Unit Test System", Power Engineering Society Meeting, IEEE, 2007.
[2] G. Stenbakken, J. Ren, M. Kezunovic, "Dynamic Characterization of PMUs Using Step Signals", IEEE Power \& Energy Society General Meeting, 2009.
[3] J. P. Braun, S. Siegenthaler, "Calibration of PMUs with a Reference Grade Calibrator", Precision Electromagnetic Measurement, (CPEM), 2014.
[4] J. P. Braun, C. Mester, "Reference grade Calibrator for the testing of the dynamic behavior of phasor measurement units", Precision Electromagnetic Measurement, (CPEM), 2012.
[5] IEEE C37.118.1-2011, Standard for Synchrophasor Measurements for Power Systems, 2011.

[^0]: ${ }^{1}$ FONARSEC Project is financed by Ministerio de Ciencia, Tecnología e Innovación Productiva.

