
XII Reunión de Trabajo en Procesamiento de la Informaci ón y Control, 16 al 18 de octubre de 2007
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luish@inaoep.mx

Abstract— In this paper we present a method-
ology for finding operating points in networks con-
taining MOS transistors, linear positive resistors,
and independent voltage and current sources. The
MOS transistors are described by the high-canonical
piecewise-linear (HC-PWL) model. A hybrid for-
mulation is obtained from the network under anal-
ysis and it is solved in order to find the solution(s).
The methodology takes advantage from the uniformly
spaced simplicial partition in which the HC-PWL
model is based because it makes possible to apply the
Kuh-Chien algorithm. This algorithm has proved its
efficiency to solve nonlinear resistive networks into
simplicial subdivision schemes.
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I INTRODUCTION

The task of finding the operating points, in networks con-
taining elements which are described by piecewise-linear
(PWL) models, is a topic of interest in nonlinear circuit
theory. Although numerous important references about
PWL modeling and analysis can be found [1]- [4], there
are not reported techniques which deal with the problem
of applying the HC-PWL to DC analysis, and specifically
with the task of computing operating points. This paper
intends to be a first draft to overcome such problem. The
main contribution of this paper is a methodology which
is based on the Kuh-Chien algorithm [9], for computing
operating points by a PWL approach where the nonlin-
ear elements are described by the HC-PWL model. The
network under study is considered to include MOS tran-
sistors which are described by the two dimensional HC-
PWL model reported by Julián “et al.” in references [5]
and [6]. Such model describes a n-dimensional PWL
function f(x) by the analytical expression

f(x) = CTΛ(x), ∀x ∈ S

Defined over a rectangular compact domain S in Rn

S = {(x1, · · · , xn) : 0 ≤ xi ≤ miδ, i ∈ {1, · · · , n}}

when δ is a parameter called the grid step and mi defines
the rectangular length which is simplex partitioned.
C is denoted as vector of parameters and Λ is an expres-
sion which contains terms described by the so called ab-
solute value γ function that is given by

γ (fi, fj) =
1
4
{||−fi| + fj | − |−fi + |fj||}

+
1
4
{|−fi| + |fj | − |−fi + fj|}

with fi and fj as hyperplane equations.

A more detailed explanation about the HC-PWL
model can be found in references [5], [6], and [7]. In
this paper we are specifically interested in a methodology
for computing operating points that is compatible with
the HC-PWL model. The model description of the MOS
transistors is assumed to be the explicit form of the
HC-PWL representation reported in [7].

II MOS TRANSISTOR NETWORK

Fig.1 shows a 2µ-port network terminated by µ MOS
transistors. In the network there are linear positive re-
sistors and independent voltage and current sources.
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Figure 1: A 2µ port terminated by MOS transistors.
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A hybrid formulation for the 2µ-port is reported in refer-
ence [8] and it is given by[

iα
vβ

]
= −

[
Hαα Hαβ

Hβα Hββ

] [
vα

iβ

]
+

[
dα

dβ

]
(1)

where

iα =
[
iDS1 · · · iDS(2µ−1)

]T
, iβ =

[
iGS2 · · · iGS(2µ)

]T
,

vα =
[
vDS1 · · · vDS(2µ−1)

]T
,vβ = [vGS2 · · · vGS(2µ)]T

are port currents and port voltages, dα, dβ are subvectors
of source vector.
From the MOS physics characteristics it can be seen that
iα = f (vα,vβ) and iβ = 0. So that the hybrid formula-
tion is reduced to:

f (vα,vβ) + Hααvα = dα (2)

Hβαvα + vβ = dβ (3)

III TWO DIMENSIONAL SIMPLICIAL
SUBDIVISION

In the network shown in Fig.1, it is considered that the
functions iα = f (vα, vβ) are defined over a simplicial
partition space. Hence, it is important to introduce the
notation that here after will be used to refer the simplices.
Figure 2 shows a two-dimensional space which has been
simplically partitioned.

x1

x2

x0

Figure 2: A two-dimensional simplicial partition.

Let x0,x1,x2 be three points in this space.
A simplex S (x0,x1,x2) is defined by

S = (x0,x1,x2) =

{
x : x =

2∑
i=0

µixi

}
(4)

with 1 ≥ µi ≥ 0, i = {0, 1, 2}

and
∑2

i=0 µi = 1

The points x0,x1, and x2 are called vertices of the
simplex. Corresponding to three vertices, there are three
boundaries Bk.
Bk contains all the vertices except xk and it is defined as

Bk = {x : x ∈ S (x0,x1,x2)} (5)

with µk = 0, and k = {0, 1, 2}

The intersection of two boundaries is called corner.
Thus every vertex is in fact a corner. Fig.3 depicts the
geometrical relation between the vertices and boundaries
for any simplex in a two-dimensional space.
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Figure 3: S = (x0,x1,x2) and its boundaries.

IV REPLACEMENT RULE

In reference [9], Kuh and Chien proposed a technique
denominated replacement rule. It permits to trace a path
in a structure of simplices. The technique considers that
a new simplex can be reached by deleting a vertex and
crossing its boundary. This idea is graphically depicted
in Fig.4.
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x1x0
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Figure 4: Replacement rule.

Let the boundaries set be defined by

Bk =
{
x :

[
x
1

]
=

[
x0 x1 x2

1 1 1

]}
µ (6)

where the k-th component of µ is zero, (µk = 0)

The new region is determined by the boundary Bk,
and a new vertex x̂k is computed from

x̂ = xk+1 + xk−1 − xk (7)

with k = 1 at reference value

Equation (7) is usefull in the iterative process of
finding an operating point, because it indicates how to
traverse simplices until the solution is reached.

V THE KUH-CHIEN ALGORITHM

Let the two-dimensional equation Y(x) = G (x) be de-
fined on a finite simplicial partition domain.
Let S (x0,x1,x2) be any simplex in a simplicial parti-
tion. An affine function approximating the given g(·) on
S (x0,x1,x2) can be defined by

Y (x) = [g (x0) ,g (x1) ,g (x2)]µ (8)

for x ∈ S (x0,x1,x2) and µ = [µ0, µ1, µ2]
T

Let adopt the following representation:[
Y(x)

1

]
=

[
g (x0) g (x1) g (x2)

1 1 1

]
µ (9)
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for x ∈ S (x0,x1,x2) with[
x
1

]
=

[
x0 x1 x2

1 1 1

]
µ (10)

Then, equation (9) can be rewritten as[
Y(x)

1

]
=

[
g (x0) g (x1) g (x2)

1 1 1

]
Xµ (11)

with

Xµ =
[

x0 x1 x2

1 1 1

]−1 [
x
1

]
(12)

Since x ∈ S (x0,x1,x2) if and only if the vector µ sat-
isfies the condition 1 ≥ µ ≥ 0, then it is very easy to
check whether an approximate solution of Y = G(x), is
found in S (x0,x1,x2) if and only if the solution of eq.
(9) satisfies µ ≥ 0.
If there exists any negative element in µ, then the solution
must be reached in other simplex. It implies an iterative
process of solving eq.(9) and checking µ. Aided by the
replacement rule, the new region which the solution en-
ters is easily determined.

VI METHODOLOGY

Let a nonlinear network containing linear resistors, inde-
pendent voltage sources, independent current sources and
MOS transistors be described by the HC-PWL model as
a the analytical PWL function iDS = CT Λ(vDS , vGS).
The methodology for finding operating points is summa-
rized in the following steps:

• Step 1: Obtain the reduced hybrid formulation for
the network depicted in Fig. 1 as

f (vα,vβ) + Hααvα = dα (13)

Hβαvα + vβ = dβ (14)

where f (vα,vβ) has the form CT Λ(vDS , vGS)

• Step 2: Recast the reduced hybrid formulation into
the form Y = 0 as

Y =
[

f (vα,vβ) + Hααvα − dα

Hβαvα + vβ − dβ

]
= 0 (15)

• Step 3: Start with the simplex: {x0,x1,x2}
• Step 4: Evaluate the simplex vertices into the sys-

tem Y(x) = G(x) = 0

Y(x) = [g (x0) ,g (x1) ,g (x2)] = 0 (16)

• Step 5: Form the system for the i-th iteration[
Y(x)

1

]
=

[
G (x)

1

]
µ(i) =

[
0
1

]
(17)

with

µ(i) =

⎡
⎢⎣ µ

(i)
0

µ
(i)
1

µ
(i)
2

⎤
⎥⎦ =

[
µ

(i)
0 , · · · , µ

(i)
k

]T

(18)

and k ∈ {0, 1, 2}

• Step 6 Solve equation (17) for µ(i)

• Step 7: Search the k-th element of µ(i) which is
negative. If all the elements of µ(i) are positive,
then go to Step 9, otherwise go to Step 8

• Step 8: Apply the replacement rule to the xk vertex
and return to Step 3

x̃k = xk+1 + xk−1 − xk (19)

• Step 9: The solution is found. Compute the solu-
tion by

[x] =
[

x0 x1 x2

]
µ(i) (20)

The above methodology is applied repeatedly in order to
compute various operating points.

VII CASE STUDY

The latch circuit shown in Fig.5 is a well known three
operating points circuit. We are interested in computing
these solutions by applying the simplicial methodology
presented in the previous section.
This circuit contains two nMOS transistors, two linear re-
sistors (R1 and R2) and a voltage source (VDD).

VDD

GND

R1 R2

0

1 2

iDS1 iDS2

Figure 5: Example circuit.

The nMOS transistors are described by the two dimen-
sional HC-PWL model. In order to make more legible
the HC-PWL formulation for iDS, the following notation
is introduced

δb
a = a |vDS − b|

φb
a = a |vGS − b|

γb
a = a |vDS − vGS + b|

λb,c
a = a ||vGS − b| + vDS − c|
−a |−vGS + b + |vDS − c||

And iDS is given by

iDS =
1
4
{HPWL} µA
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where

HPWL = δ3
32 + δ0

125 + δ4
−24 + δ1

12 + δ2
−14 + φ4

12 + φ3
28

+φ2
57 + λ1,1

1 + λ3,2
−13 + λ4,4

−25 + λ3,1
−26 + λ2,1

9 + λ2,0
−50

+λ3,0
43 + λ3,3

23 + λ4,0
2 + λ1,0

30 + λ4,1
28 + λ1,4

1 + λ4,3
9

+λ4,2
−2 + λ1,3

1 + λ2,3
−1 + λ3,4

1 + λ2,4
−1 + λ1,2

1 + λ2,0
50

The piecewise linear function iDS is described over an
uniformly spaced grid within a finite rectangular region
defined by 0 ≤ vDS ≤ 5 and 0 ≤ vGS ≤ 5 as shown
in Fig.6. The grid vDS − vGS is divided into a set of 1V
squares and it is subdivided into a simplicial partition.

Figure 6: iDS piecewise-linear curve.

The data points in Fig.6 follow the Shichman-Hodges
model [10]; namely

iDS = K̃

[
(vGS − Vt) vDS − 1

2
v2

DS

]

if vDS ≤ vGS − Vt; or

iDS =
1
2
K̃ (vGS − Vt)

2
[
1 + λ̃ (vDS − vGS + Vt)

]
if vDS > vGS − Vt, with K̃ = 50µA/V 2, Vt = 1V and
λ̃ = 0.0V −1.
From Fig.5, the following nodal information is collected

node1 : iDS1 +
vDS1 − VDD

R1
= 0, vDS1 = vGS2 (21)

node2 : iDS2 +
vDS2 − VDD

R2
= 0, vDS2 = vGS1 (22)

Because of iDS1 = f(vDS1, vGS1) and iDS2 =
f(vDS2, vGS2), then the above equations can be rewrit-
ten into the reduced hybrid system format as

f (vDS1, vGS1) +
(

1
R1

)
vDS1 =

VDD

R1
(23)

f (vDS2, vGS2) +
(

1
R2

)
vDS2 =

VDD

R2
(24)

vDS1 − vGS2 = 0
vDS2 − vGS1 = 0

Notice that equation (23) and equation (24) can be recast
as

f (e1, e2) +
(

1
R1

)
e1 =

VDD

R1
(25)

f (e2, e1) +
(

1
R2

)
e2 =

VDD

R2
(26)

where e1 and e2 are nodal voltages.

From equation (25) and equation (26), it can be
defined the equation system Y = 0 as

y1 = iDS (e1, e2) +
(

e1 − VDD

R1

)
= 0 (27)

y2 = iDS (e2, e1) +
(

e2 − VDD

R2

)
= 0 (28)

Let R1 = R2 = 30KΩ and VDD = 3.3V . The solutions
of the system Y = 0 are computed as follows.
Firstly, a start simplex is chosen.
Let

x0 =
[

2
4

]
, x1 =

[
2
5

]
, x2 =

[
3
5

]
(29)

The equation to be solved at the first iteration is⎡
⎣ g1(x0) g1(x1) g1(x2)

g2(x0) g2(x1) g2(x2)
1 1 1

⎤
⎦µ(i) =

⎡
⎣ 0

0
1

⎤
⎦ (30)

After substituting it yields

[
G (x)

1

]
µ(0) =

⎡
⎣ 0

0
1

⎤
⎦ (31)

G (x) =
[

14.37 21.67 30
5.63 9.09 18.06

]
× 10−5 (32)

The solution is

µ(0) =

⎡
⎢⎣ µ

(0)
0

µ
(0)
1

µ
(0)
2

⎤
⎥⎦ =

⎡
⎣ 3.22

−2.44
0.22

⎤
⎦ (33)

Since µ0
1 is negative, then the vertex x1 must be replaced

by [
2
4

]
+

[
3
5

]
−

[
2
5

]
=

[
3
4

]
(34)

The new simplex is defined by[
2
4

]
,

[
3
4

]
,

[
3
5

]
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In this simplex, the new equation to solve is

[
G (x)

1

]
µ(1) =

⎡
⎣ 0

0
1

⎤
⎦ (35)

G (x) =
[

14.37 20.5 30
5.63 14.6 18.06

]
× 10−5 (36)

The solution is

µ(1) =

⎡
⎢⎣ µ

(1)
0

µ
(1)
1

µ
(1)
2

⎤
⎥⎦ =

⎡
⎣ 1.065

1.405
−1.47

⎤
⎦ (37)

And the vertex to be replaced is x2 by [2 3]T . The new
simplex is then defined by[

2
4

]
,

[
3
4

]
,

[
2
3

]

The results in the third, fourth, and fifth iteration are

µ(2) =

⎡
⎢⎣ µ

(2)
0

µ
(2)
1

µ
(2)
2

⎤
⎥⎦ =

⎡
⎣ −1.709

0.295
2.414

⎤
⎦ (38)

with the following simplex defined in[
3
3

]
,

[
3
4

]
,

[
2
3

]

µ(3) =

⎡
⎢⎣ µ

(3)
0

µ
(3)
1

µ
(3)
2

⎤
⎥⎦ =

⎡
⎣ 0.93

−0.855
0.918

⎤
⎦ (39)

and the new simplex defined in[
3
3

]
,

[
2
2

]
,

[
2
3

]

µ(4) =

⎡
⎢⎣ µ

(4)
0

µ
(4)
1

µ
(4)
2

⎤
⎥⎦ =

⎡
⎣ 0.099

0.9
0

⎤
⎦ (40)

Since µ4 > 0, there is not following simplex to jump,
then the solution is computed by[

e1

e2

]
=

[
3 2 2
3 2 3

]
µ(4) =

[
2.099
2.099

]
(41)

After applying the same algorithm into two different start
simplices, the following solutions can be computed[

e1

e2

]
=

[
1 0 1
3 3 4

]
µ(4) =

[
0.857
3.3

]
(42)

[
e1

e2

]
=

[
3 3 4
0 1 1

]
µ(5) =

[
3.3

0.857

]
(43)

Notice that the three computed solutions can be sub-
stituted into the eq.(25) and eq.(26) and the condition
Y = 0 is fullfil. The paths followed by the algorithm to
obtain the solutions are depicted in Fig.7.

vDS

vGS

start

start

start

solution

solution

solution

0 1 2 3 4 5

1

2

3

4

5

Figure 7: Path solutions into the simplicial partition.

VIII Conclusions

A methodology for finding operating points in networks
containing MOS transistors was proposed. Such method-
ology is based into the Kuh-Chien algorithm and it is able
to handle equation systems which involve the HC-PWL
description. Because the algorithm is able to compute
only one solution, in multiple operating point systems it
is necessary to apply it as many times as solutions exists.
It presents two important challenges, the first consists
in determining previously to the analysis, the maximum
number of existing solutions of the system. The other
one consists in determining the optimal starting point for
running the Kuh-Chien algorithm. The analysis of both
problems promise interesting results in this topic under
investigation
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