

Desarrollo de la tecnología de Extrusión y Prensado

Equipo responsable

Julian Rodriguez
Eliseo Sanchez
Damian Fornés
Carlos Canepare
Carlos Gornatti
Nicolas Apro

EI PROYECTO

Objetivo:

Desarrollo,

Asistencia Técnica

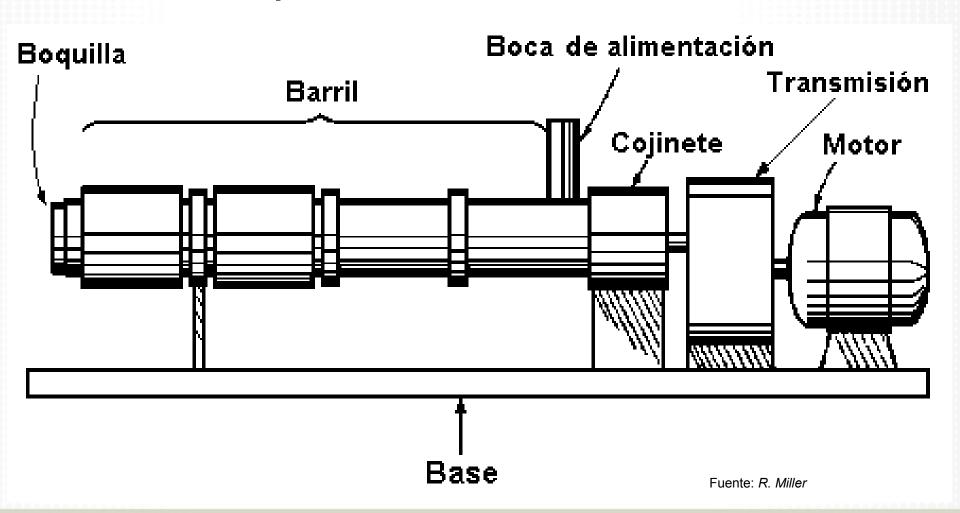
y Transferencia de la

Tecnología de Extrusión y

Extrusión-Prensado al

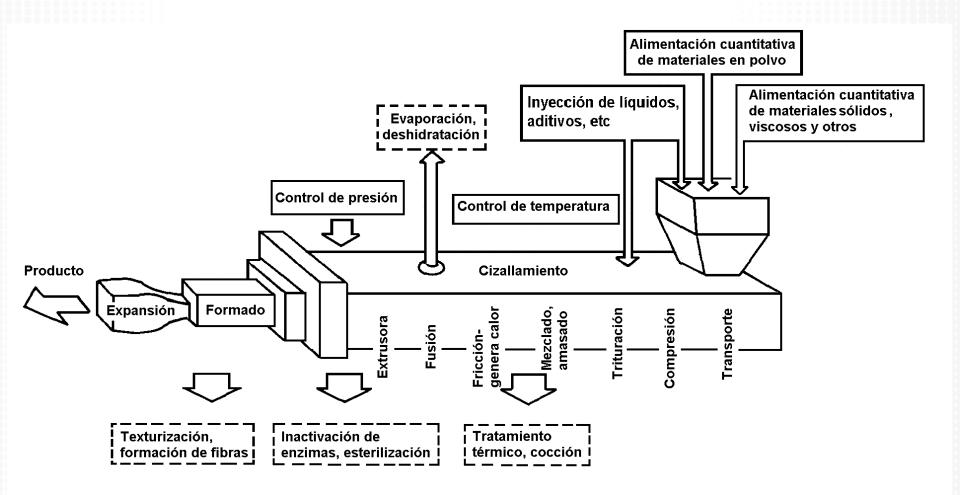
sector agroindustrial de

granos y derivados.


El proceso de extrusión

La extrusión de alimentos en general y de granos en particular, tuvo su origen en los años `50. Inicialmente su función se limitaba al mezclado y formado de pastas y a la elaboración de cereales de desayuno. En la actualidad un extrusor de alimentos es considerado un bioreactor de alta temperatura – corto tiempo que transforma una amplia variedad de materias primas en productos intermedios y finales modificados.

Es una tecnología flexible mediante la cual pueden obtenerse gran variedad de productos a partir de diferentes materias primas (granos y derivados).



Esquema básico de una extrusora

Procesos dentro de la extrusora

Parámetros y variables de la extrusión

MATERIAL CRUDO

- ·Composición: grasa, almidón, proteína, fibra.
- ·Humedad.
- ·Tamaño de partícula.
- Aditivos.

ALTERACIONES DEL SISTEMA

- Uso del tornillo.
- Condiciones ambientales.

BOQUILLA

Área de apertura.

·Resistencia del flujo.

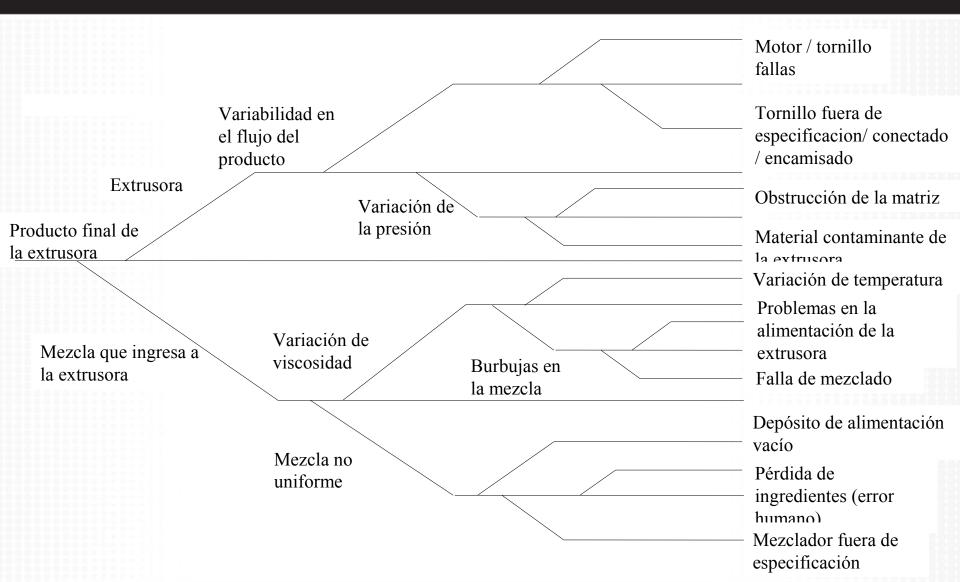
PARAMETROS DEL SISTEMA

Alimentación.

VARIABLES

Adición de agua.

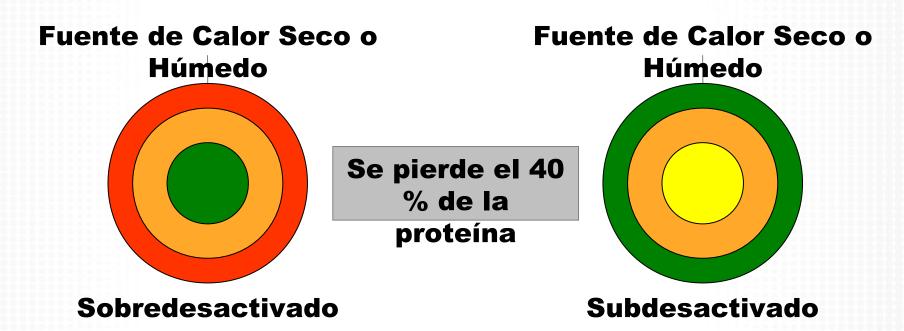
OPERACIONALES


- Velocidad del tornillo.
- Perfil del tornillo.
- Velocidad del cortador.
- Temperatura del barril.

- ·Energía mecánica.
- ·Tiempo de residencia.
- ·Energía térmica.
- •Temperatura del producto.
- ·Presión del producto.
- ·Viscosidad.

CALIDAD DEL PRODUCTO

- ·Humedad del producto.
- Temperatura del producto.
- ·Volumen, Expansión o Densidad.
- ·Morfología (forma, tamaño, uniformidad).
- Textura / Caracteres sensoriales.
- ·Índice de solubilidad en agua.
- ·Índice de absorción de agua.
- ·Gelatinización.
- •Dextrinización (degradación molecular).


Factores antinutricionales de la soja

TERMOLÁBILES	
Inhibidores de proteasas (inhibidores de tripsina)	Inhibición del crecimiento e hipertrofia pancreática.
Hemaglutininas	Aglutinación de Glóbulos rojos. Inhibición del crecimiento.
Factores antinutricionales	Hipertrofia de glándula tiroides, bocio.
Antivitaminas	Raquitogénesis. Efectos antivitaminas E y B ₁₂
TERMOESTABLES	
Estrógenos	Inhibición del crecimiento.
Saponinas	Hemólisis
Oligosacáridos (rafinos y estaquiosa)	Generación de gases intestinales y desórdenes abdominales.
Lisinoalanina	Lesiones renales. Disminución del contenido de cisteína y de lisina disponible.
Alergenos	Náuseas, diarreas, vómitos.

Desactivado por tratamiento de calor seco y húmedo

•VERDE: desactivado correctamente

•ANARANJ ADO: desactivado o desnaturalizado parcialmente

•AMARILLO: sin desactivar

•ROJO: proteína desnaturalizada

Ventajas de la extrusión

- Flexibilidad de operación, lo que permite una gran diversidad de productos.
- Posibilidad de procesar alimentos en muy diversas formulaciones permitiendo adecuar el nivel nutricional que requieren diversos grupos de consumidores.
- Bajos costos de procesamiento e inversión relativamente baja por unidad de producto obtenido.
- Tecnología relativamente simple desde el punto de vista operativo.

Ventajas de la extrusión (cont.)

- Mínimo deterioro de los nutrientes de los alimentos, por tratarse de un proceso de "alta temperatura - corto tiempo".
- Eficiente utilización de la energía, ya que el sistema de procesamiento por extrusión opera a una humedad relativamente baja, al mismo tiempo que el producto alimenticio se cocina (pregelatiniza).
- Ausencia de efluentes.
- Posibilidad de inactivar enzimas y antinutrientes y la elaboración de un producto básicamente estéril.

Ventajas de los granos precocidos

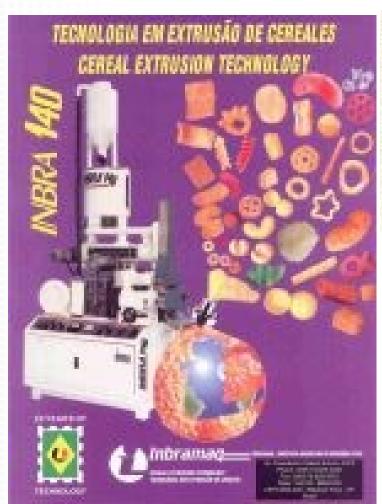
En el desarrollo de distintos productos alimenticios a base de cereales y oleaginosas existe la tendencia a presentarlos en un estado precocido. Las ventajas de esta forma de comercialización son varias:

- Gelatinización de la fracción almidonosa de la fórmula para dar máxima digestibilidad.
- Inactivación térmica de inhibidores del crecimiento y factores que alteran la digestibilidad o el gusto.

Ventajas de los granos precocidos (cont.)

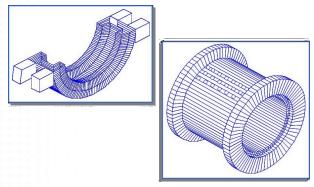
- Interacción entre proteínas, vitaminas, minerales y carbohidratos que aseguran una buena distribución en el producto final.
- Producción de un producto sanitariamente adecuado.
- Alta estabilidad del almacenaje.
- Posibilidad de dar forma y textura diferente.
- Posibilidad de agregar diferentes sabores, colores, etc.

Alimentos elaborados por extrusión


Variedad de extrusoras

Antecedentes

- En el año 1994, se decidió la compra de una extrusora de simple tornillo.
- Se concretó la instalación de la primer planta piloto completa en al año 1995.


Planta Piloto Extrusión-Prensado

• En el año 1998 se inició el desarrollo de la etapa de prensado de oleaginosas, finalizando con éxito el desarrollo de la tecnología de Extrusión—Prensado (EP) en el año 1999.

El proceso de Extrusión y Prensado

El proceso de extrusión seca-prensado mecánico (E-P) de oleaginosas

- Proceso innovativo.
- Permite la obtención de productos con alto valor agregado, con una importante demanda en el mercado de alimentos saludables.
- Rendimiento del 75 % en aceite con una sola pasada por la prensa.
- Harina semidesgrasada de alta calidad proteica.
- Abastecimiento a nichos de mercado (alto oleico, orgánico, Identidad Preservada).
- Bajo costo.

Ventajas del proceso E-P

- Flexible en capacidad de procesamiento.
- Bajo capital de inversión.
- Manejo simple.
- Compatible con el medio ambiente.
- Apto para el procesamiento en pequeña escala, para acopiadores, cooperativas, asociación de productores.
- Materia prima: soja, girasol, algodón, maní, colza, germen de trigo, maíz, arroz, amaranto, quinoa, arveja proteica, etc.).
- Base de Proyectos de Desarrollo Regional.

Antecedentes


- En el año 2000, en base a los desarrollos realizados, se construyó e instaló la planta semindustrial de EP.
- En el año 2007 se construyó e instaló la Planta Piloto Multipropósito, permitiendo la realización de numerosas operaciones unitarias sobre granos y derivados.

Planta Piloto Multipropósito

La extrusión y Prensado de soja

Productos comerciales

证 DIPLOMA

中国国际食品和饮料展览会组委会证明,一家专门从事创新研究的独立专家评审团将以下称号: SIAL China's organizing committee certifies that an independent jury of experts specialized in the field of innovation awarded the label:

第七届中国国际食品和饮料展览会创新产品 Innovative product SIAL China 2006

to

产品名称 / Product Name: 健康王米坊 / NUTRITOP SO./MO. HEALTH POLENTA
公司名称 / Company Name: RIVARA
国家 / Country: ドライルシェ / ARGENTINA

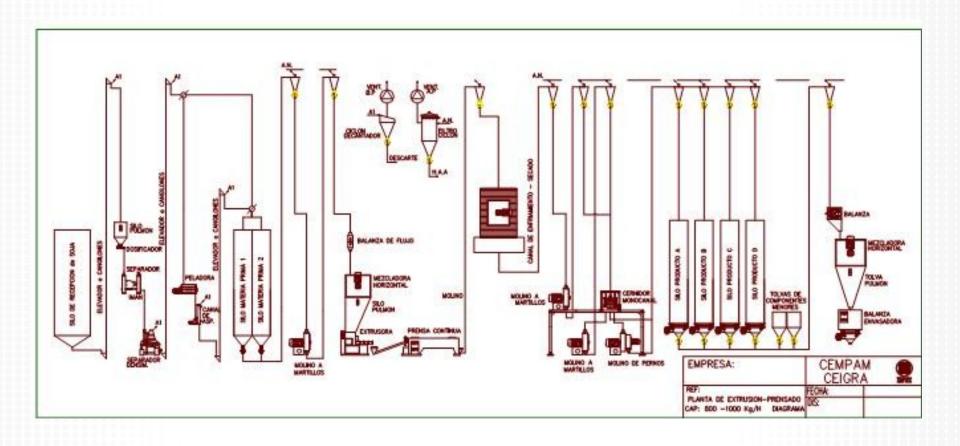
2006年5月,上海 Shanghai, May 2006


沙威 戴尔莱 / Xavier Terlet 评审团主席 / President of the Jury 赛西尔 巨家 / Cécile BASSOT SIAL 集团总经理 / Managing Director – SIAL Group

www.inti.gob.ar | 0800 444 4044

Instalación de Planta Multipropósito

Inauguración Planta Multipropósito



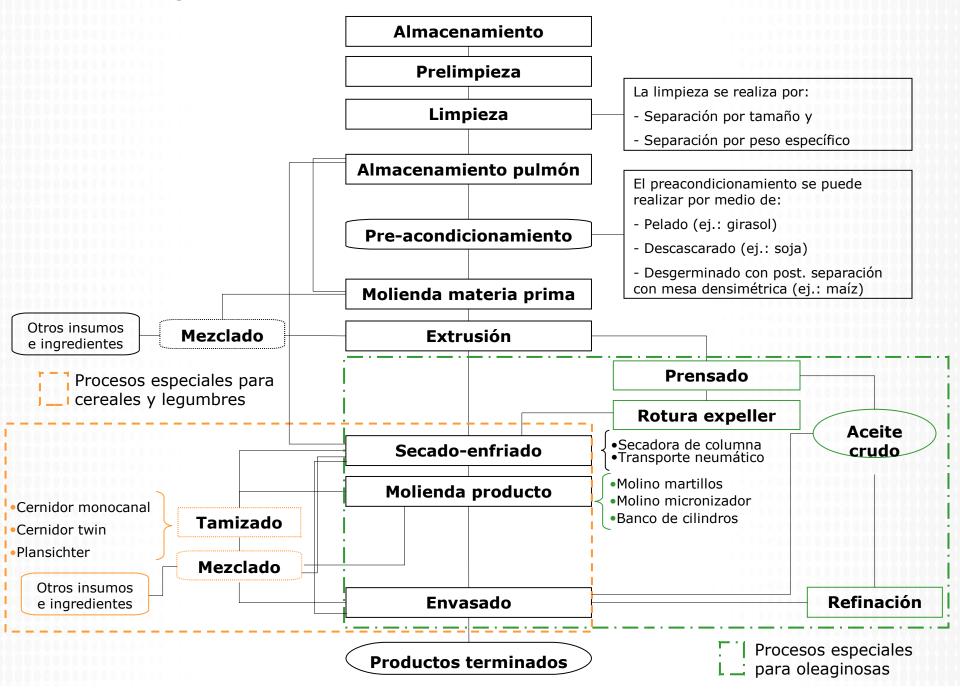


Diagrama de flujo de planta piloto de E-P

Esquema general de Planta Multipropósito de Industrialización de Granos

Destinatarios principales

Los resultados de este Proyecto se dirigen a diversos sectores de la cadena de valor de los granos, desde la alimentación animal, hasta la alimentación humana:

- Productores de granos.
- Empresas acopiadoras.
- Molinos.
- Fábricas de panificados, galletitas, alimentos funcionales y otros productos derivados de los granos.

Actores externos involucrados

Las distintas etapas iniciadas en el año 1994, tuvieron como contraparte empresas del sector, que mediante desarrollos solicitados por las empresas o impulsados por el Centro y proyectos presentados a FONTAR (CAE y ANR 600), permitieron el financiamiento parcial de las instalaciones.

Actores internos involucrados

En los proyectos de desarrollo y transferencia participan las distintas áreas del Centro de CyO:

- Asistencia técnica y Transferencia.
- Investigación y Desarrollo.
- Evaluación Sensorial.
- Análisis.
- Etiquetado Nutricional.
- Planta Piloto.
- Gestión de la Calidad.

LOS LOGROS

Impacto en los destinatarios del Proyecto

- Instalación de planta industrial de procesamiento de oleaginosas orgánicas.
- Desarrollo y transferencia de alimentos precocidos para planes alimentarios.
- Anteproyecto de elaboración de cereales de desayuno.
- Desarrollo, formulación de productos y elaboración de partidas piloto y semindustriales.

Desarrollos realizados

- Alimentos aptos para celiacos.
- Insumos y productos funcionales derivados de granos.
- Rebozadores, batters y rellenos para pastas.
- Harinas de grano entero y harinas multigrano.
- Pastas frescas y secas integrales y multigrano.

Desarrollos realizados

- Harinas de granos no tradicionales.
- Barras de cereales para distintas aplicaciones.
- Alimentos preparados para planes alimentarios, ancianos, emergencia, etc.
- Harinas pregelatinizadas.
- Panificados funcionales.
- Subproductos de la molienda de granos.

Resultados para los años siguientes

El trabajo a futuro es transferir los proyectos antes mencionados a los que se agregan los siguientes:

- Transferencia tecnológica para la fabricación del equipamiento y asistencia técnica para la instalación de plantas.
- Desarrollo de la extrusora y tecnología correspondiente para la formulación de alimentos para piscicultura y cereales de desayuno.
- Proyecto Panadería Saludable con el Ministerio de Salud de la Nación, Ministerio de Salud de La Pampa y FAIPA (Federación de la Industria del Pan y Afines) en La Pampa.

iMUCHAS GRACIAS!

INTI – Cereales y Oleaginosas Sede 9 de Julio

Director: Nicolás Apro

cerealesyoleaginosas@inti.gob.ar napro@inti.gob.ar