CAMBIO DE ESCALA EN LA PRODUCCION INDUSTRIAL DEL RECUBRIMIENTO DE ZINC NÍQUEL CON PARTÍCULAS Y ADITIVOS.

Z. Mahmud ⁽ⁱ⁾, F. Amelotti⁽ⁱ⁾, C.Serpi⁽ⁱⁱ⁾, O. Maskaric⁽ⁱⁱⁱ⁾, N. Míngolo^(iv), L. Gassa^(v), G. Gordillo^(vi) (i) INTI Procesos Superficiales, (ii)INTI Mecánica, (iii) Dropur S.A, (iv) CNEA, (v)INIFTA, (vi) UBA zulema@inti.gob.ar

OBJETIVO

1. Investigar para encontrar las variables óptimas de operación del proceso de producción del material de aleación.

2. Caracterizar el material de (ZnNi) obtenido por electrodeposición, en medio ácido en INTI y en la industria en la firma Dropur SA.

3. Comparar y ajustar las condiciones del laboratorio a las de la industria y de igual modo con los datos de la industria, el ajuste para compatibilizar ambos procesos.

DESCRIPCIÓN

Introducción

El recubrimiento de aleación de zinc con níguel (ZnNi) tiene resistencia contra la corrosión y por eso, se usa desde hace años en la industria automotriz, de la construcción y la industria aeroespacial. Lo novedoso de éste trabajo, es que mejoran las propiedades mecánicas de (dureza y desgaste) y la protección contra la corrosión (contenido de Ni) que son mayores que en el ZnNi solo. Las partículas y aditivos orgánicos, modifican la microestructura, refinan el grano, y mejoran la resistencia a la corrosión y el brillo. Se analizan, las variables de operación del proceso y cómo afectan a la calidad del material. Las variables estudiadas son: la corriente, el tiempo, la agitación, la temperatura y la concentración de sacarina. Se hizo el cambio de escala y se analizaron los resultados en el laboratorio y en la industria.

Materiales y métodos

La electrodeposición se efectuó sobre un sustrato de acero y el contraelectrodo para cerrar el circuito era de Ni. Se usaron soluciones concentradas de sulfatos de Ni 1,4M y de sulfatos de Zn 0,9M pH 4. Las muestras después de la electrólisis se lavaron con agua corriente y destilada y por último, con ultrasonido para eliminar las partículas que no se hubieran incorporado, se secaron y guardaron en desecador hasta su estudio. Se utilizaron técnicas de caracterización como la Fluorescencia de rayos X para determinar espesores y contenidos de Ni, de acuerdo a la norma ASTM B568-98(2014). Se aplicaron técnicas de Espectroscopía de Impedancia Electroquímica, EIS, Curvas de Polarización y otras, en los laboratorios de INTI, Procesos Superficiales. Dichas técnicas son de uso habitual y se aplican para comparar materiales obtenidos en distintas condiciones operación y conocer el desempeño del material en diferentes medios que simulan atmósferas

más o menos agresivas. En INTI- Mecánica se analizó la distribución de partículas en las muestras en corte, en el Microscopio Óptico. Se compararon las Microestructuras, y se hizo el Microanálisis (EDX) en INTI Microscopía Electrónica. La difracción de rayos X, DRX, y las mediciones de texturas se llevaron a cabo en la Comisión de Energía Atómica CNEA. Se hicieron estudios adicionales de caracterización en el INIFTA-UNLP, y en la FCEN-UBA. En la industria, se hicieron las muestras en las condiciones lo más próximas a las del laboratorio. Éste trabaio tuvo el Primer Premio a la Innovación Tecnológica, en las Jornadas de Primavera 2010. En febrero de 2014, se publicó la Patente en el Boletín INPI, Número 767, página 20.

RESULTADOS

Se presentan los resultados obtenidos en el laboratorio y en la industria, en condiciones de transferencia de materia análogas. Se usó la técnica galvanostática, obtenida a densidad de corriente constante, de j = 8Adm^{-2} , para el caso de 10 µm y de 20 µm, en la solución de electrodeposición, sin y con partículas. Se programaron así los estudios con el objeto de comparar en cada caso, el material, producido en el laboratorio y en planta. En la Tabla 1, se presentan los parámetros de resistencia a la corrosión y las fases presentes.

1- <u>Elección de la densidad de corriente j del</u> proceso, en función de Z.

En las figuras 1a y 1b se investiga el efecto de las densidades de corriente de deposición, j, en

Figura 1. Laboratorio. (a) Galvanostáticas para la deposición $6Adm^{2}$ y $8Adm^{2}$, b) Impedancias por EIS: Diagrama de Nyquist en ECA. Barrido de w desde 100KHz a 5mHz, en medio bórico borato a pH 9, en muestras producidas previamente a distintas j . j = $6Adm^{2}$, j = $8Adm^{2}$, j = $10Adm^{2}$.

En la fig. 1a, los potenciales E / V, se desplazan en el sentido positivo o noble de potenciales, por lo tanto, el material es más

noble a 8Adm⁻², curva roja a -1,36V. En la fig. 1b, (Z: representa la resistencia en Ω / ohm del material). En estas curvas, cuando mayor es el valor de Z' o mayor es el diámetro, significa una mayor protección del material. En éste caso, la protección es mayor a 8Adm⁻² que es la densidad de corriente de producción del material (curva roja). Por eso se eligió 8Adm⁻².

2- Espesor óptimo obtenido en la industria a j igual a 8Adm⁻².

En el laboratorio se encontró un espesor de recubrimiento óptimo de 10µm, en el que es mejor el material, son mayores las intensidades de texturas (por difracción de rayos X, DRX, y son mayores los valores de resistencia a la corrosión). En el material, en la industria, fig.2a, se encontró por la técnica de caracterización de impedancia, un valor mayor de RTC o Z'/Ω , en el eje x, para un espesor de 10 micrones, la protección es mayor que para 20 µm. En muestras a escala industrial de ~20 µm, los valores de Z son menores (6000Ω), (fig.2b), por lo tanto, es menor la protección. Se encontró la misma tendencia que en el laboratorio fig.2a, para espesor e =10 µm, RTC es mayor, y más aún con partículas de alúmina (ver la tabla 1, laboratorio). El material con ese espesor, es más resistente a la corrosión y más barato.

Figura 2. Planta. Muestras com alúmina. a) EIS: Diagrama de Nyquist variando el espesor 10 micrones y 20 micrones con el recubrimiento producidas previamente a j $8Adm^{-2}$. b) EIS: Nyquist en muestras de espesor de 20 μ m a j = $8Adm^{-2}$.

Tabla 1. Caracterización del Material en el laboratorio

Espesor µm	Impedancia EIS. RTC/ Ωcm ⁻²		Curvas de polarización. j₀/ µA cm ⁻²	
	ZnNi	ZnNi con alúmina	ZnNi	ZnNi con alúmina
5	4000	7000	2,7	1,8
10	13000	21000	2	1,5
20	5200	7500	4	1,8
Fases presentes: ZnNi $\gamma(3,3,0)$ sin partículas y ZnNi con Alúmina fase $\eta(110)$. EIS: Altos valores de RTC o Z' indican que el material protege más. Curvas de Polarización bajos valores de j ₀ indican un material más resistente a la corrosión.				

<u>3-Calidad del material del ZnNi más Alúmina</u> obtenido en Planta.

Figura 3: Planta: Contenido de Ni % vs j para ZnNi a) con alumina, y b) Dureza vs j para ZnNi con alumina.

En la fig.3a, el contenido de Ni vs j, obtenido en la Planta industrial da valores de 15 % a j = $8Adm^{-2}$ para el ZnNi con Al_2O_3 y aditivo humectante. La dureza en la fig. 3b está dentro de los valores esperados, similares, a los valores obtenidos en el laboratorio a j = $8Adm^{-2}$. 4-Calidad del Material ZnNi con CSi obtenido en Planta.

El contenido de Ni tiene valores altos que oscilan entre 17 y 19 %, el material es de mayor calidad. En la fig. 4b, se midieron valores de Impedancia, IZI a bajas frecuencias, del orden de 900 ohm (ZnNi sin partículas) y de 25000 ohm (ZnNi con CSi). Él aumento de RTC indica mejor protección con partículas.

Figura 4: Planta: a) Contenido de Ni vs j para ZnNi con CSi, y b) Diagrama de Nyquist Z´´vs Z´con CSi.

Conclusiones

- En planta y laboratorio. Las condiciones de operación óptimas son: 8Adm⁻², 10 minutos, 10 μm, con agitación controlada y a 40 °C (se obtienen altos contenidos de Ni).
- 2. En Planta y en el Laboratorio: El espesor de 10 μm es óptimo (Tabla 1) se comprobó que son mayores los RTC o Z'(obtenidos por EIS en planta). Éste espesor de 10 μm es tecnológicamente más viable, porque el material es más protector y más barato.
- 3.En planta. Con Micro-partículas de CSi se consiguieron altos contenidos de Ni del 17 al 19% y mayores valores de RTC (25000 ohm con CSi), lo que implica un material noble, con partículas. La microestructura con sacarina es de grano fino, lo que es deseable.

Bibliografía:

1. Mahmud Z. et al. REVISTA PROCEDIA. MATERIALS SCIENCE. SAM CONAMET 2014.

2. .Z.Mahmud.http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_463 4_Mahmud.pdf.

3. Fratesi. G, Roventi. R, Surface and Coating Technology. 82.1996. 158-164.